Merge pull request #45260 from AmanKishore:amankishore/language-fix

PiperOrigin-RevId: 346482205
Change-Id: I4366b9acc035dc7fce63fa156526877d11bf4bca
This commit is contained in:
TensorFlower Gardener 2020-12-08 22:46:19 -08:00
commit b42a52af70

View File

@ -856,7 +856,7 @@ INSTANTIATE_TEST_SUITE_P(QuantizationOrNot, BidirectionalRNNOpTest,
// TODO(mirkov): add another test which directly compares to TF once TOCO
// supports the conversion from dynamic_rnn with BasicRNNCell.
TEST_P(BidirectionalRNNOpTest, BlackBoxTest) {
TEST_P(BidirectionalRNNOpTest, ClosedBoxTest) {
auto params = GetParam();
const bool quantize_weights = std::get<0>(params);
const bool asymmetric_quantize_inputs = std::get<1>(params);
@ -903,8 +903,8 @@ TEST_P(BidirectionalRNNOpTest, BlackBoxTest) {
bw_expected, quantize_weights ? 1.42e-2 : 1e-5)));
}
// Same as BlackBox test, but input is reshuffled to time_major format.
TEST_P(BidirectionalRNNOpTest, BlackBoxTestTimeMajor) {
// Same as ClosedBox test, but input is reshuffled to time_major format.
TEST_P(BidirectionalRNNOpTest, ClosedBoxTestTimeMajor) {
auto params = GetParam();
const bool quantize_weights = std::get<0>(params);
const bool asymmetric_quantize_inputs = std::get<1>(params);
@ -950,8 +950,8 @@ TEST_P(BidirectionalRNNOpTest, BlackBoxTestTimeMajor) {
fw_expected, quantize_weights ? kHybridTolerance : kFloatTolerance)));
}
// Same as BlackBox test, yet with merged outputs.
TEST_P(BidirectionalRNNOpTest, BlackBoxTestMergeOutputs) {
// Same as ClosedBox test, yet with merged outputs.
TEST_P(BidirectionalRNNOpTest, ClosedBoxTestMergeOutputs) {
auto params = GetParam();
const bool quantize_weights = std::get<0>(params);
const bool asymmetric_quantize_inputs = std::get<1>(params);
@ -995,8 +995,8 @@ TEST_P(BidirectionalRNNOpTest, BlackBoxTestMergeOutputs) {
merged_expected, quantize_weights ? 1.42e-2 : 1e-5)));
}
// Same as BlackBox test, but input is reshuffled to time_major format.
TEST(BidirectionalRNNOpTest, BlackBoxTestTimeMajorMergeOutputs) {
// Same as ClosedBox test, but input is reshuffled to time_major format.
TEST(BidirectionalRNNOpTest, ClosedBoxTestTimeMajorMergeOutputs) {
BidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*fw_units=*/16, /*bw_units=*/16,
/*input_size=*/8, /*aux_input_size=*/0,
@ -1042,7 +1042,7 @@ TEST(BidirectionalRNNOpTest, BlackBoxTestTimeMajorMergeOutputs) {
// Check that if the input sequence is reversed the outputs are the same just
// forward and backward are swapped (and reversed).
TEST(BidirectionalRNNOpTest, BlackBoxTestReverseInputs) {
TEST(BidirectionalRNNOpTest, ClosedBoxTestReverseInputs) {
BidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*fw_units=*/16, /*bw_units=*/16,
/*input_size=*/8, /*aux_input_size=*/0,
@ -1163,11 +1163,11 @@ TEST(BidirectionalRNNOpTest, EndToEndTest) {
}
}
// Same as BlackBox test, but has an auxiliary input. The layer has no
// Same as ClosedBox test, but has an auxiliary input. The layer has no
// cross-linking, i.e. the regular input is passed as an input to the forward
// network only and the auxiliary input is passed as an input to the backward
// network only.
TEST(BidirectionalRNNOpTest, BlackBoxTestNoCrossLinkingRegularAndAuxInput) {
TEST(BidirectionalRNNOpTest, ClosedBoxTestNoCrossLinkingRegularAndAuxInput) {
BidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*fw_units=*/16, /*bw_units=*/16,
/*input_size=*/8, /*aux_input_size=*/8,
@ -1216,7 +1216,7 @@ TEST(BidirectionalRNNOpTest, BlackBoxTestNoCrossLinkingRegularAndAuxInput) {
// Same as above but the auxiliary input is set to zeroes. This test makes sure
// that the forward network works as expected in a no-cross-linking mode.
TEST(BidirectionalRNNOpTest, BlackBoxTestNoCrossLinkingRegularInputOnly) {
TEST(BidirectionalRNNOpTest, ClosedBoxTestNoCrossLinkingRegularInputOnly) {
BidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*fw_units=*/16, /*bw_units=*/16,
/*input_size=*/8, /*aux_input_size=*/8,
@ -1264,7 +1264,7 @@ TEST(BidirectionalRNNOpTest, BlackBoxTestNoCrossLinkingRegularInputOnly) {
// Same as above but the regular (i.e. not auxiliary) input is set to zeroes.
// This test makes sure that the backward network works as expected in a
// no-cross-linking mode.
TEST(BidirectionalRNNOpTest, BlackBoxTestNoCrossLinkingAuxInputOnly) {
TEST(BidirectionalRNNOpTest, ClosedBoxTestNoCrossLinkingAuxInputOnly) {
BidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*fw_units=*/16, /*bw_units=*/16,
/*input_size=*/8, /*aux_input_size=*/8,
@ -1309,9 +1309,9 @@ TEST(BidirectionalRNNOpTest, BlackBoxTestNoCrossLinkingAuxInputOnly) {
EXPECT_THAT(rnn.GetBwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected)));
}
// Same as BlackBox test, but an input is passed to auxiliary input instead of
// Same as ClosedBox test, but an input is passed to auxiliary input instead of
// the regular one. Regular input and weights are set to zero.
TEST(BidirectionalRNNOpTest, BlackBoxTestCrossLinkingAuxInputOnly) {
TEST(BidirectionalRNNOpTest, ClosedBoxTestCrossLinkingAuxInputOnly) {
BidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*fw_units=*/16, /*bw_units=*/16,
/*input_size=*/8, /*aux_input_size=*/8,
@ -1358,10 +1358,10 @@ TEST(BidirectionalRNNOpTest, BlackBoxTestCrossLinkingAuxInputOnly) {
EXPECT_THAT(rnn.GetBwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected)));
}
// Same as BlackBox test, but an input is passed to auxiliary input instead of
// Same as ClosedBox test, but an input is passed to auxiliary input instead of
// the regular one. Regular input and weights are set to zero. Time major inputs
// and outputs.
TEST(BidirectionalRNNOpTest, BlackBoxTestCrossLinkingAuxInputOnlyTimeMajor) {
TEST(BidirectionalRNNOpTest, ClosedBoxTestCrossLinkingAuxInputOnlyTimeMajor) {
BidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*fw_units=*/16, /*bw_units=*/16,
/*input_size=*/8, /*aux_input_size=*/8,
@ -1408,7 +1408,7 @@ TEST(BidirectionalRNNOpTest, BlackBoxTestCrossLinkingAuxInputOnlyTimeMajor) {
EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected)));
}
// Same as BlackBox test, but the input tensor and weights tensor are split
// Same as ClosedBox test, but the input tensor and weights tensor are split
// along the last dimension and passed to both regular and auxiliary inputs and
// weights. The output in this case is the same. To understand this, let's
// define W and V as regular input weights matrix and auxiliary input weights
@ -1418,7 +1418,7 @@ TEST(BidirectionalRNNOpTest, BlackBoxTestCrossLinkingAuxInputOnlyTimeMajor) {
// f(z) = Uz + b
// is equivalent to:
// f((x^T|y^T)^T) = (Wx + Vy) + b.
void run_blackbox_test_with_input_split(int input_size, int aux_input_size) {
void run_closedbox_test_with_input_split(int input_size, int aux_input_size) {
const int num_units = 16;
BidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*fw_units=*/num_units, /*bw_units=*/num_units,
@ -1498,14 +1498,14 @@ void run_blackbox_test_with_input_split(int input_size, int aux_input_size) {
}
TEST(BidirectionalRNNOpTest,
BlackBoxTestCrossLinkingRegularAndAuxInputEvenSplit) {
run_blackbox_test_with_input_split(/*input_size=*/4, /*aux_input_size=*/4);
ClosedBoxTestCrossLinkingRegularAndAuxInputEvenSplit) {
run_closedbox_test_with_input_split(/*input_size=*/4, /*aux_input_size=*/4);
}
// Same as above but the input tensor and the weights tensor are split unevenly.
TEST(BidirectionalRNNOpTest,
BlackBoxTestCrossLinkingRegularAndAuxInputUnevenSplit) {
run_blackbox_test_with_input_split(/*input_size=*/2, /*aux_input_size=*/6);
ClosedBoxTestCrossLinkingRegularAndAuxInputUnevenSplit) {
run_closedbox_test_with_input_split(/*input_size=*/2, /*aux_input_size=*/6);
}
} // namespace