TensorFlow: Upstream changes to git.
Changes: - Documentation updates. - Relax numpy requirement to 1.9.2 Base CL: 107349632
This commit is contained in:
parent
1d3874fe2f
commit
b2dc60eaa9
@ -626,7 +626,7 @@ REGISTER_OP("SegmentSum")
|
||||
.Doc(R"doc(
|
||||
Computes the sum along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
Read [the section on Segmentation](../../api_docs/python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
@ -653,8 +653,9 @@ REGISTER_OP("SegmentMean")
|
||||
.Doc(R"doc(
|
||||
Computes the mean along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
\\(output_i = \frac{\sum_j data_j}{N}\\) where `mean` is
|
||||
@ -681,8 +682,9 @@ REGISTER_OP("SegmentProd")
|
||||
.Doc(R"doc(
|
||||
Computes the product along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
\\(output_i = \prod_j data_j\\) where the product is over `j` such
|
||||
@ -708,8 +710,9 @@ REGISTER_OP("SegmentMin")
|
||||
.Doc(R"doc(
|
||||
Computes the minimum along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
\\(output_i = \min_j(data_j)\\) where `min` is over `j` such
|
||||
@ -735,7 +738,7 @@ REGISTER_OP("SegmentMax")
|
||||
.Doc(R"doc(
|
||||
Computes the maximum along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
Read [the section on Segmentation](../../api_docs/python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
@ -763,8 +766,9 @@ REGISTER_OP("UnsortedSegmentSum")
|
||||
.Doc(R"doc(
|
||||
Computes the sum along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
\\(output_i = \sum_j data_j\\) where sum is over `j` such
|
||||
@ -797,8 +801,9 @@ REGISTER_OP("SparseSegmentSum")
|
||||
.Doc(R"doc(
|
||||
Computes the sum along sparse segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Like `SegmentSum`, but `segment_ids` can have rank less than `data`'s first
|
||||
dimension, selecting a subset of dimension_0, specified by `indices`.
|
||||
@ -843,8 +848,9 @@ REGISTER_OP("SparseSegmentMean")
|
||||
.Doc(R"doc(
|
||||
Computes the mean along sparse segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Like `SegmentMean`, but `segment_ids` can have rank less than `data`'s first
|
||||
dimension, selecting a subset of dimension_0, specified by `indices`.
|
||||
|
@ -3,8 +3,8 @@
|
||||
TensorFlow's public C++ API includes only the API for executing graphs, as of
|
||||
version 0.5. To control the execution of a graph from C++:
|
||||
|
||||
1. Build the computation graph using the [Python API](../python/).
|
||||
1. Use [tf.train.write_graph()](../python/train.md#write_graph) to
|
||||
1. Build the computation graph using the [Python API](../../api_docs/python/).
|
||||
1. Use [tf.train.write_graph()](../../api_docs/python/train.md#write_graph) to
|
||||
write the graph to a file.
|
||||
1. Load the graph using the C++ Session API. For example:
|
||||
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Tensor Transformations <a class="md-anchor" id="AUTOGENERATED-tensor-transformations"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
|
@ -61,8 +61,8 @@ print sess.run(c)
|
||||
```
|
||||
|
||||
A session may own resources, such as
|
||||
[variables](state_ops.md#Variable), [queues](io_ops.md#QueueBase),
|
||||
and [readers](io_ops.md#ReaderBase). It is important to release
|
||||
[variables](../../api_docs/python/state_ops.md#Variable), [queues](../../api_docs/python/io_ops.md#QueueBase),
|
||||
and [readers](../../api_docs/python/io_ops.md#ReaderBase). It is important to release
|
||||
these resources when they are no longer required. To do this, either
|
||||
invoke the [`close()`](#Session.close) method on the session, or use
|
||||
the session as a context manager. The following two examples are
|
||||
@ -134,30 +134,31 @@ graph element, and these determine the return value of this
|
||||
method. A graph element can be one of the following types:
|
||||
|
||||
* If the *i*th element of `fetches` is an
|
||||
[`Operation`](framework.md#Operation), the *i*th return value
|
||||
will be `None`.
|
||||
[`Operation`](../../api_docs/python/framework.md#Operation), the *i*th
|
||||
return value will be `None`.
|
||||
* If the *i*th element of `fetches` is a
|
||||
[`Tensor`](framework.md#Tensor), the *i*th return value will
|
||||
be a numpy ndarray containing the value of that tensor.
|
||||
[`Tensor`](../../api_docs/python/framework.md#Tensor), the *i*th return
|
||||
value will be a numpy ndarray containing the value of that tensor.
|
||||
* If the *i*th element of `fetches` is a
|
||||
[`SparseTensor`](sparse_ops.md#SparseTensor), the *i*th
|
||||
return value will be a
|
||||
[`SparseTensorValue`](sparse_ops.md#SparseTensorValue)
|
||||
[`SparseTensor`](../../api_docs/python/sparse_ops.md#SparseTensor),
|
||||
the *i*th return value will be a
|
||||
[`SparseTensorValue`](../../api_docs/python/sparse_ops.md#SparseTensorValue)
|
||||
containing the value of that sparse tensor.
|
||||
|
||||
The optional `feed_dict` argument allows the caller to override
|
||||
the value of tensors in the graph. Each key in `feed_dict` can be
|
||||
one of the following types:
|
||||
|
||||
* If the key is a [`Tensor`](framework.md#Tensor), the
|
||||
* If the key is a [`Tensor`](../../api_docs/python/framework.md#Tensor), the
|
||||
value may be a Python scalar, string, list, or numpy ndarray
|
||||
that can be converted to the same `dtype` as that
|
||||
tensor. Additionally, if the key is a
|
||||
[placeholder](io_ops.md#placeholder), the shape of the value
|
||||
will be checked for compatibility with the placeholder.
|
||||
* If the key is a [`SparseTensor`](sparse_ops.md#SparseTensor),
|
||||
[placeholder](../../api_docs/python/io_ops.md#placeholder), the shape of
|
||||
the value will be checked for compatibility with the placeholder.
|
||||
* If the key is a
|
||||
[`SparseTensor`](../../api_docs/python/sparse_ops.md#SparseTensor),
|
||||
the value should be a
|
||||
[`SparseTensorValue`](sparse_ops.md#SparseTensorValue).
|
||||
[`SparseTensorValue`](../../api_docs/python/sparse_ops.md#SparseTensorValue).
|
||||
|
||||
##### Args: <a class="md-anchor" id="AUTOGENERATED-args-"></a>
|
||||
|
||||
@ -211,9 +212,9 @@ The graph that was launched in this session.
|
||||
Returns a context manager that makes this object the default session.
|
||||
|
||||
Use with the `with` keyword to specify that calls to
|
||||
[`Operation.run()`](framework.md#Operation.run) or
|
||||
[`Tensor.run()`](framework.md#Tensor.run) should be executed in
|
||||
this session.
|
||||
[`Operation.run()`](../../api_docs/python/framework.md#Operation.run) or
|
||||
[`Tensor.run()`](../../api_docs/python/framework.md#Tensor.run) should be
|
||||
executed in this session.
|
||||
|
||||
```python
|
||||
c = tf.constant(..)
|
||||
@ -267,9 +268,9 @@ A TensorFlow `Session` for use in interactive contexts, such as a shell.
|
||||
|
||||
The only difference with a regular `Session` is that an `InteractiveSession`
|
||||
installs itself as the default session on construction.
|
||||
The methods [`Tensor.eval()`](framework.md#Tensor.eval) and
|
||||
[`Operation.run()`](framework.md#Operation.run) will use that session
|
||||
to run ops.
|
||||
The methods [`Tensor.eval()`](../../api_docs/python/framework.md#Tensor.eval)
|
||||
and [`Operation.run()`](../../api_docs/python/framework.md#Operation.run)
|
||||
will use that session to run ops.
|
||||
|
||||
This is convenient in interactive shells and [IPython
|
||||
notebooks](http://ipython.org), as it avoids having to pass an explicit
|
||||
@ -371,7 +372,7 @@ The operation that failed, if known.
|
||||
|
||||
*N.B.* If the failed op was synthesized at runtime, e.g. a `Send`
|
||||
or `Recv` op, there will be no corresponding
|
||||
[`Operation`](framework.md#Operation) object. In that case, this
|
||||
[`Operation`](../../api_docs/python/framework.md#Operation) object. In that case, this
|
||||
will return `None`, and you should instead use the
|
||||
[`OpError.node_def`](#OpError.node_def) to discover information about the
|
||||
op.
|
||||
@ -423,11 +424,12 @@ The error message that describes the error.
|
||||
Raised when an operation or step is cancelled.
|
||||
|
||||
For example, a long-running operation (e.g.
|
||||
[`queue.enqueue()`](io_ops.md#QueueBase.enqueue) may be cancelled by
|
||||
running another operation (e.g.
|
||||
[`queue.close(cancel_pending_enqueues=True)`](io_ops.md#QueueBase.close),
|
||||
or by [closing the session](client.md#Session.close). A step that is
|
||||
running such a long-running operation will fail by raising `CancelledError`.
|
||||
[`queue.enqueue()`](../../api_docs/python/io_ops.md#QueueBase.enqueue) may be
|
||||
cancelled by running another operation (e.g.
|
||||
[`queue.close(cancel_pending_enqueues=True)`](../../api_docs/python/io_ops.md#QueueBase.close),
|
||||
or by [closing the session](../../api_docs/python/client.md#Session.close).
|
||||
A step that is running such a long-running operation will fail by raising
|
||||
`CancelledError`.
|
||||
|
||||
- - -
|
||||
|
||||
@ -465,10 +467,10 @@ Raised when an operation receives an invalid argument.
|
||||
|
||||
This may occur, for example, if an operation is receives an input
|
||||
tensor that has an invalid value or shape. For example, the
|
||||
[`tf.matmul()`](math_ops.md#matmul) op will raise this error if it
|
||||
receives an input that is not a matrix, and the
|
||||
[`tf.reshape()`](array_ops.md#reshape) op will raise this error if
|
||||
the new shape does not match the number of elements in the input
|
||||
[`tf.matmul()`](../../api_docs/python/math_ops.md#matmul) op will raise this
|
||||
error if it receives an input that is not a matrix, and the
|
||||
[`tf.reshape()`](../../api_docs/python/array_ops.md#reshape) op will raise
|
||||
this error if the new shape does not match the number of elements in the input
|
||||
tensor.
|
||||
|
||||
- - -
|
||||
@ -502,8 +504,8 @@ Creates a `DeadlineExceededError`.
|
||||
Raised when a requested entity (e.g., a file or directory) was not found.
|
||||
|
||||
For example, running the
|
||||
[`tf.WholeFileReader.read()`](io_ops.md#WholeFileReader) operation
|
||||
could raise `NotFoundError` if it receives the name of a file that
|
||||
[`tf.WholeFileReader.read()`](../../api_docs/python/io_ops.md#WholeFileReader)
|
||||
operation could raise `NotFoundError` if it receives the name of a file that
|
||||
does not exist.
|
||||
|
||||
- - -
|
||||
@ -521,8 +523,8 @@ Creates a `NotFoundError`.
|
||||
Raised when an entity that we attempted to create already exists.
|
||||
|
||||
For example, running an operation that saves a file
|
||||
(e.g. [`tf.train.Saver.save()`](train.md#Saver.save)) could
|
||||
potentially raise this exception if an explicit filename for an
|
||||
(e.g. [`tf.train.Saver.save()`](../../api_docs/python/train.md#Saver.save))
|
||||
could potentially raise this exception if an explicit filename for an
|
||||
existing file was passed.
|
||||
|
||||
- - -
|
||||
@ -540,8 +542,8 @@ Creates an `AlreadyExistsError`.
|
||||
Raised when the caller does not have permission to run an operation.
|
||||
|
||||
For example, running the
|
||||
[`tf.WholeFileReader.read()`](io_ops.md#WholeFileReader) operation
|
||||
could raise `PermissionDeniedError` if it receives the name of a
|
||||
[`tf.WholeFileReader.read()`](../../api_docs/python/io_ops.md#WholeFileReader)
|
||||
operation could raise `PermissionDeniedError` if it receives the name of a
|
||||
file for which the user does not have the read file permission.
|
||||
|
||||
- - -
|
||||
@ -592,8 +594,8 @@ Creates a `ResourceExhaustedError`.
|
||||
Operation was rejected because the system is not in a state to execute it.
|
||||
|
||||
This exception is most commonly raised when running an operation
|
||||
that reads a [`tf.Variable`](state_ops.md#Variable) before it has
|
||||
been initialized.
|
||||
that reads a [`tf.Variable`](../../api_docs/python/state_ops.md#Variable)
|
||||
before it has been initialized.
|
||||
|
||||
- - -
|
||||
|
||||
@ -609,9 +611,11 @@ Creates a `FailedPreconditionError`.
|
||||
|
||||
The operation was aborted, typically due to a concurrent action.
|
||||
|
||||
For example, running a [`queue.enqueue()`](io_ops.md#QueueBase.enqueue)
|
||||
For example, running a
|
||||
[`queue.enqueue()`](../../api_docs/python/io_ops.md#QueueBase.enqueue)
|
||||
operation may raise `AbortedError` if a
|
||||
[`queue.close()`](io_ops.md#QueueBase.close) operation previously ran.
|
||||
[`queue.close()`](../../api_docs/python/io_ops.md#QueueBase.close) operation
|
||||
previously ran.
|
||||
|
||||
- - -
|
||||
|
||||
@ -628,9 +632,10 @@ Creates an `AbortedError`.
|
||||
Raised when an operation executed past the valid range.
|
||||
|
||||
This exception is raised in "end-of-file" conditions, such as when a
|
||||
[`queue.dequeue()`](io_ops.md#QueueBase.dequeue) operation is
|
||||
blocked on an empty queue, and a
|
||||
[`queue.close()`](io_ops.md#QueueBase.close) operation executes.
|
||||
[`queue.dequeue()`](../../api_docs/python/io_ops.md#QueueBase.dequeue)
|
||||
operation is blocked on an empty queue, and a
|
||||
[`queue.close()`](../../api_docs/python/io_ops.md#QueueBase.close)
|
||||
operation executes.
|
||||
|
||||
- - -
|
||||
|
||||
@ -648,9 +653,9 @@ Raised when an operation has not been implemented.
|
||||
|
||||
Some operations may raise this error when passed otherwise-valid
|
||||
arguments that it does not currently support. For example, running
|
||||
the [`tf.nn.max_pool()`](nn.md#max_pool) operation would raise this
|
||||
error if pooling was requested on the batch dimension, because this
|
||||
is not yet supported.
|
||||
the [`tf.nn.max_pool()`](../../api_docs/python/nn.md#max_pool) operation
|
||||
would raise this error if pooling was requested on the batch dimension,
|
||||
because this is not yet supported.
|
||||
|
||||
- - -
|
||||
|
||||
@ -700,8 +705,8 @@ Creates an `UnavailableError`.
|
||||
Raised when unrecoverable data loss or corruption is encountered.
|
||||
|
||||
For example, this may be raised by running a
|
||||
[`tf.WholeFileReader.read()`](io_ops.md#WholeFileReader) operation,
|
||||
if the file is truncated while it is being read.
|
||||
[`tf.WholeFileReader.read()`](../../api_docs/python/io_ops.md#WholeFileReader)
|
||||
operation, if the file is truncated while it is being read.
|
||||
|
||||
- - -
|
||||
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Constants, Sequences, and Random Values <a class="md-anchor" id="AUTOGENERATED-constants--sequences--and-random-values"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
@ -313,11 +313,13 @@ time they are evaluated.
|
||||
|
||||
The `seed` keyword argument in these functions acts in conjunction with
|
||||
the graph-level random seed. Changing either the graph-level seed using
|
||||
[`set_random_seed`](constant_op.md#set_random_seed) or the op-level seed
|
||||
will change the underlying seed of these operations. Setting neither graph-level
|
||||
nor op-level seed, results in a random seed for all operations.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for details on the
|
||||
interaction between operation-level and graph-level random seeds.
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) or the
|
||||
op-level seed will change the underlying seed of these operations. Setting
|
||||
neither graph-level nor op-level seed, results in a random seed for all
|
||||
operations.
|
||||
See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for details on the interaction between operation-level and graph-level random
|
||||
seeds.
|
||||
|
||||
### Examples: <a class="md-anchor" id="AUTOGENERATED-examples-"></a>
|
||||
|
||||
@ -373,7 +375,9 @@ Outputs random values from a normal distribution.
|
||||
of the normal distribution.
|
||||
* <b>dtype</b>: The type of the output.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed for the distribution.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
* <b>name</b>: A name for the operation (optional).
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
@ -401,7 +405,9 @@ deviations from the mean are dropped and re-picked.
|
||||
of the truncated normal distribution.
|
||||
* <b>dtype</b>: The type of the output.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed for the distribution.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
* <b>name</b>: A name for the operation (optional).
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
@ -429,7 +435,9 @@ the upper bound `maxval` is excluded.
|
||||
the range of random values to generate.
|
||||
* <b>dtype</b>: The type of the output.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed for the distribution.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
* <b>name</b>: A name for the operation (optional).
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
@ -458,7 +466,9 @@ to one and only one `output[i]`. For example, a mapping that might occur for a
|
||||
|
||||
* <b>value</b>: A Tensor to be shuffled.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed for the distribution.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
* <b>name</b>: A name for the operation (optional).
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Control Flow <a class="md-anchor" id="AUTOGENERATED-control-flow"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
|
@ -44,14 +44,16 @@ Classes and functions for building TensorFlow graphs.
|
||||
|
||||
A TensorFlow computation, represented as a dataflow graph.
|
||||
|
||||
A `Graph` contains a set of [`Operation`](framework.md#Operation) objects,
|
||||
which represent units of computation; and [`Tensor`](framework.md#Tensor)
|
||||
objects, which represent the units of data that flow between operations.
|
||||
A `Graph` contains a set of
|
||||
[`Operation`](../../api_docs/python/framework.md#Operation) objects,
|
||||
which represent units of computation; and
|
||||
[`Tensor`](../../api_docs/python/framework.md#Tensor) objects, which represent
|
||||
the units of data that flow between operations.
|
||||
|
||||
A default `Graph` is always registered, and accessible by calling
|
||||
[`tf.get_default_graph()`](framework.md#get_default_graph). To add an
|
||||
operation to the default graph, simply call one of the functions that defines
|
||||
a new `Operation`:
|
||||
[`tf.get_default_graph()`](../../api_docs/python/framework.md#get_default_graph).
|
||||
To add an operation to the default graph, simply call one of the functions
|
||||
that defines a new `Operation`:
|
||||
|
||||
```
|
||||
c = tf.constant(4.0)
|
||||
@ -59,7 +61,7 @@ assert c.graph is tf.get_default_graph()
|
||||
```
|
||||
|
||||
Another typical usage involves the
|
||||
[`Graph.as_default()`](framework.md#Graph.as_default)
|
||||
[`Graph.as_default()`](../../api_docs/python/framework.md#Graph.as_default)
|
||||
context manager, which overrides the current default graph for the
|
||||
lifetime of the context:
|
||||
|
||||
@ -129,7 +131,7 @@ Returns a serialized `GraphDef` representation of this graph.
|
||||
|
||||
The serialized `GraphDef` can be imported into another `Graph`
|
||||
(using [`import_graph_def()`](#import_graph_def)) or used with the
|
||||
[C++ Session API](../cc/index.md).
|
||||
[C++ Session API](../../api_docs/cc/index.md).
|
||||
|
||||
This method is thread-safe.
|
||||
|
||||
@ -155,7 +157,7 @@ Finalizes this graph, making it read-only.
|
||||
After calling `g.finalize()`, no new operations can be added to
|
||||
`g`. This method is used to ensure that no operations are added
|
||||
to a graph when it is shared between multiple threads, for example
|
||||
when using a [`QueueRunner`](train.md#QueueRunner).
|
||||
when using a [`QueueRunner`](../../api_docs/python/train.md#QueueRunner).
|
||||
|
||||
|
||||
- - -
|
||||
@ -373,9 +375,9 @@ A `Graph` instance supports an arbitrary number of "collections"
|
||||
that are identified by name. For convenience when building a large
|
||||
graph, collections can store groups of related objects: for
|
||||
example, the `tf.Variable` uses a collection (named
|
||||
[`tf.GraphKeys.VARIABLES`](framework.md#GraphKeys)) for all variables that are
|
||||
created during the construction of a graph. The caller may define
|
||||
additional collections by specifying a new name.
|
||||
[`tf.GraphKeys.VARIABLES`](../../api_docs/python/framework.md#GraphKeys)) for
|
||||
all variables that are created during the construction of a graph. The caller
|
||||
may define additional collections by specifying a new name.
|
||||
|
||||
- - -
|
||||
|
||||
@ -662,15 +664,17 @@ Represents a graph node that performs computation on tensors.
|
||||
An `Operation` is a node in a TensorFlow `Graph` that takes zero or
|
||||
more `Tensor` objects as input, and produces zero or more `Tensor`
|
||||
objects as output. Objects of type `Operation` are created by
|
||||
calling a Python op constructor (such as [`tf.matmul()`](math_ops.md#matmul))
|
||||
or [`Graph.create_op()`](framework.md#Graph.create_op).
|
||||
calling a Python op constructor (such as
|
||||
[`tf.matmul()`](../../api_docs/python/math_ops.md#matmul))
|
||||
or [`Graph.create_op()`](../../api_docs/python/framework.md#Graph.create_op).
|
||||
|
||||
For example `c = tf.matmul(a, b)` creates an `Operation` of type
|
||||
"MatMul" that takes tensors `a` and `b` as input, and produces `c`
|
||||
as output.
|
||||
|
||||
After the graph has been launched in a session, an `Operation` can
|
||||
be executed by passing it to [`Session.run()`](client.md#Session.run).
|
||||
be executed by passing it to
|
||||
[`Session.run()`](../../api_docs/python/client.md#Session.run).
|
||||
`op.run()` is a shortcut for calling `tf.get_default_session().run(op)`.
|
||||
|
||||
- - -
|
||||
@ -748,8 +752,8 @@ available, or `session` must be specified explicitly.
|
||||
|
||||
|
||||
* <b>feed_dict</b>: A dictionary that maps `Tensor` objects to feed values.
|
||||
See [`Session.run()`](client.md#Session.run) for a description of the
|
||||
valid feed values.
|
||||
See [`Session.run()`](../../api_docs/python/client.md#Session.run)
|
||||
for a description of the valid feed values.
|
||||
* <b>session</b>: (Optional.) The `Session` to be used to run to this operation. If
|
||||
none, the default session will be used.
|
||||
|
||||
@ -872,7 +876,7 @@ Represents a value produced by an `Operation`.
|
||||
A `Tensor` is a symbolic handle to one of the outputs of an
|
||||
`Operation`. It does not hold the values of that operation's output,
|
||||
but instead provides a means of computing those values in a
|
||||
TensorFlow [`Session`](client.md#Session).
|
||||
TensorFlow [`Session`](../../api_docs/python/client.md#Session).
|
||||
|
||||
This class has two primary purposes:
|
||||
|
||||
@ -883,7 +887,7 @@ This class has two primary purposes:
|
||||
|
||||
2. After the graph has been launched in a session, the value of the
|
||||
`Tensor` can be computed by passing it to
|
||||
[`Session.run()`](client.md#Session.run).
|
||||
[`Session.run()`](../../api_docs/python/client.md#Session.run).
|
||||
`t.eval()` is a shortcut for calling
|
||||
`tf.get_default_session().run(t)`.
|
||||
|
||||
@ -964,8 +968,8 @@ available, or `session` must be specified explicitly.
|
||||
|
||||
|
||||
* <b>feed_dict</b>: A dictionary that maps `Tensor` objects to feed values.
|
||||
See [`Session.run()`](client.md#Session.run) for a description of
|
||||
the valid feed values.
|
||||
See [`Session.run()`](../../api_docs/python/client.md#Session.run) for a
|
||||
description of the valid feed values.
|
||||
* <b>session</b>: (Optional.) The `Session` to be used to evaluate this tensor. If
|
||||
none, the default session will be used.
|
||||
|
||||
@ -983,8 +987,8 @@ Returns the `TensorShape` that represents the shape of this tensor.
|
||||
|
||||
The shape is computed using shape inference functions that are
|
||||
registered for each `Operation` type using `tf.RegisterShape`.
|
||||
See [`TensorShape`](framework.md#TensorShape) for more details of what a shape
|
||||
represents.
|
||||
See [`TensorShape`](../../api_docs/python/framework.md#TensorShape) for more
|
||||
details of what a shape represents.
|
||||
|
||||
The inferred shape of a tensor is used to provide shape
|
||||
information without having to launch the graph in a session. This
|
||||
@ -1279,7 +1283,9 @@ Converts the given `type_value` to a `DType`.
|
||||
|
||||
Wrapper for `Graph.device()` using the default graph.
|
||||
|
||||
See [`Graph.name_scope()`](framework.md#Graph.name_scope) for more details.
|
||||
See
|
||||
[`Graph.name_scope()`](../../api_docs/python/framework.md#Graph.name_scope)
|
||||
for more details.
|
||||
|
||||
##### Args: <a class="md-anchor" id="AUTOGENERATED-args-"></a>
|
||||
|
||||
@ -1299,7 +1305,9 @@ See [`Graph.name_scope()`](framework.md#Graph.name_scope) for more details.
|
||||
|
||||
Wrapper for `Graph.name_scope()` using the default graph.
|
||||
|
||||
See [`Graph.name_scope()`](framework.md#Graph.name_scope) for more details.
|
||||
See
|
||||
[`Graph.name_scope()`](../../api_docs/python/framework.md#Graph.name_scope)
|
||||
for more details.
|
||||
|
||||
##### Args: <a class="md-anchor" id="AUTOGENERATED-args-"></a>
|
||||
|
||||
@ -1318,7 +1326,7 @@ See [`Graph.name_scope()`](framework.md#Graph.name_scope) for more details.
|
||||
|
||||
Wrapper for `Graph.control_dependencies()` using the default graph.
|
||||
|
||||
See [`Graph.control_dependencies()`](framework.md#Graph.control_dependencies)
|
||||
See [`Graph.control_dependencies()`](../../api_docs/python/framework.md#Graph.control_dependencies)
|
||||
for more details.
|
||||
|
||||
##### Args: <a class="md-anchor" id="AUTOGENERATED-args-"></a>
|
||||
@ -1458,7 +1466,7 @@ protocol buffer, and extract individual objects in the `GraphDef` as
|
||||
|
||||
Wrapper for `Graph.add_to_collection()` using the default graph.
|
||||
|
||||
See [`Graph.add_to_collection()`](framework.md#Graph.add_to_collection)
|
||||
See [`Graph.add_to_collection()`](../../api_docs/python/framework.md#Graph.add_to_collection)
|
||||
for more details.
|
||||
|
||||
##### Args: <a class="md-anchor" id="AUTOGENERATED-args-"></a>
|
||||
@ -1475,7 +1483,7 @@ for more details.
|
||||
|
||||
Wrapper for `Graph.get_collection()` using the default graph.
|
||||
|
||||
See [`Graph.get_collection()`](framework.md#Graph.get_collection)
|
||||
See [`Graph.get_collection()`](../../api_docs/python/framework.md#Graph.get_collection)
|
||||
for more details.
|
||||
|
||||
##### Args: <a class="md-anchor" id="AUTOGENERATED-args-"></a>
|
||||
@ -1511,17 +1519,20 @@ The following standard keys are defined:
|
||||
|
||||
* `VARIABLES`: the `Variable` objects that comprise a model, and
|
||||
must be saved and restored together. See
|
||||
[`tf.all_variables()`](state_ops.md#all_variables) for more details.
|
||||
[`tf.all_variables()`](../../api_docs/python/state_ops.md#all_variables)
|
||||
for more details.
|
||||
* `TRAINABLE_VARIABLES`: the subset of `Variable` objects that will
|
||||
be trained by an optimizer. See
|
||||
[`tf.trainable_variables()`](state_ops.md#trainable_variables)
|
||||
[`tf.trainable_variables()`](../../api_docs/python/state_ops.md#trainable_variables)
|
||||
for more details.
|
||||
* `SUMMARIES`: the summary `Tensor` objects that have been created
|
||||
in the graph. See [`tf.merge_all_summaries()`](train.md#merge_all_summaries)
|
||||
* `SUMMARIES`: the summary `Tensor` objects that have been created in the
|
||||
graph. See
|
||||
[`tf.merge_all_summaries()`](../../api_docs/python/train.md#merge_all_summaries)
|
||||
for more details.
|
||||
* `QUEUE_RUNNERS`: the `QueueRunner` objects that are used to
|
||||
produce input for a computation. See
|
||||
[`tf.start_queue_runners()`](train.md#start_queue_runners) for more details.
|
||||
[`tf.start_queue_runners()`](../../api_docs/python/train.md#start_queue_runners)
|
||||
for more details.
|
||||
|
||||
|
||||
## Defining new operations <a class="md-anchor" id="AUTOGENERATED-defining-new-operations"></a>
|
||||
@ -1643,10 +1654,10 @@ A `TensorShape` represents a possibly-partial shape specification for a
|
||||
|
||||
If a tensor is produced by an operation of type `"Foo"`, its shape
|
||||
may be inferred if there is a registered shape function for
|
||||
`"Foo"`. See [`tf.RegisterShape()`](framework.md#RegisterShape)
|
||||
`"Foo"`. See [`tf.RegisterShape()`](../../api_docs/python/framework.md#RegisterShape)
|
||||
for details of shape
|
||||
functions and how to register them. Alternatively, the shape may be set
|
||||
explicitly using [`Tensor.set_shape()`](framework.md#Tensor.set_shape).
|
||||
explicitly using [`Tensor.set_shape()`](../../api_docs/python/framework.md#Tensor.set_shape).
|
||||
|
||||
- - -
|
||||
|
||||
@ -2068,7 +2079,7 @@ internally use the two seeds to allow user to change the seed globally for a
|
||||
graph, or for only specific operations.
|
||||
|
||||
For details on how the graph-level seed interacts with op seeds, see
|
||||
[`set_random_seed`](constant_op.md#set_random_seed).
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed).
|
||||
|
||||
##### Args: <a class="md-anchor" id="AUTOGENERATED-args-"></a>
|
||||
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Images <a class="md-anchor" id="AUTOGENERATED-images"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
@ -497,8 +497,9 @@ fully contains the result.
|
||||
|
||||
* <b>image</b>: 3-D tensor of shape `[height, width, channels]`
|
||||
* <b>size</b>: 1-D tensor with two elements, specifying target `[height, width]`
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
* <b>name</b>: A name for this operation (optional).
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
@ -601,8 +602,9 @@ dimension, which is `height`. Otherwise output the image as-is.
|
||||
|
||||
|
||||
* <b>image</b>: A 3-D tensor of shape `[height, width, channels].`
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
||||
@ -654,8 +656,9 @@ second dimension, which is `width`. Otherwise output the image as-is.
|
||||
|
||||
|
||||
* <b>image</b>: A 3-D tensor of shape `[height, width, channels].`
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
||||
@ -744,8 +747,9 @@ have modifications in the range `[-max_delta,max_delta]`.
|
||||
|
||||
* <b>image</b>: 3-D tensor of shape `[height, width, channels]`.
|
||||
* <b>max_delta</b>: float, must be non-negative.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
||||
@ -814,8 +818,9 @@ picked in the interval `[lower, upper]`.
|
||||
* <b>image</b>: 3-D tensor of shape `[height, width, channels]`.
|
||||
* <b>lower</b>: float. Lower bound for the random contrast factor.
|
||||
* <b>upper</b>: float. Upper bound for the random contrast factor.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Inputs and Readers <a class="md-anchor" id="AUTOGENERATED-inputs-and-readers"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
@ -1591,8 +1591,9 @@ queue has been closed.
|
||||
the number of tensors in each queue element.
|
||||
* <b>shapes</b>: (Optional.) A list of fully-defined `TensorShape` objects,
|
||||
with the same length as `dtypes` or `None`.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
* <b>shared_name</b>: (Optional.) If non-empty, this queue will be shared under
|
||||
the given name across multiple sessions.
|
||||
* <b>name</b>: Optional name for the queue operation.
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Math <a class="md-anchor" id="AUTOGENERATED-math"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
@ -1322,7 +1322,7 @@ tf.segment_sum(c, tf.constant([0, 0, 1]))
|
||||
|
||||
Computes the sum along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
Read [the section on Segmentation](../../api_docs/python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
@ -1355,8 +1355,9 @@ that `segment_ids[j] == i`.
|
||||
|
||||
Computes the product along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
\\(output_i = \prod_j data_j\\) where the product is over `j` such
|
||||
@ -1388,8 +1389,9 @@ that `segment_ids[j] == i`.
|
||||
|
||||
Computes the minimum along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
\\(output_i = \min_j(data_j)\\) where `min` is over `j` such
|
||||
@ -1421,7 +1423,7 @@ that `segment_ids[j] == i`.
|
||||
|
||||
Computes the maximum along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
Read [the section on Segmentation](../../api_docs/python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
@ -1454,8 +1456,9 @@ that `segment_ids[j] == i`.
|
||||
|
||||
Computes the mean along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
\\(output_i = \frac{\sum_j data_j}{N}\\) where `mean` is
|
||||
@ -1489,8 +1492,9 @@ values summed.
|
||||
|
||||
Computes the sum along segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Computes a tensor such that
|
||||
\\(output_i = \sum_j data_j\\) where sum is over `j` such
|
||||
@ -1530,8 +1534,9 @@ If the sum is empty for a given segment ID `i`, `output[i] = 0`.
|
||||
|
||||
Computes the sum along sparse segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Like `SegmentSum`, but `segment_ids` can have rank less than `data`'s first
|
||||
dimension, selecting a subset of dimension_0, specified by `indices`.
|
||||
@ -1582,8 +1587,9 @@ tf.segment_sum(c, tf.constant([0, 0, 1]))
|
||||
|
||||
Computes the mean along sparse segments of a tensor.
|
||||
|
||||
Read [the section on Segmentation](../python/math_ops.md#segmentation)
|
||||
for an explanation of segments.
|
||||
Read [the section on
|
||||
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
|
||||
of segments.
|
||||
|
||||
Like `SegmentMean`, but `segment_ids` can have rank less than `data`'s first
|
||||
dimension, selecting a subset of dimension_0, specified by `indices`.
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Neural Network <a class="md-anchor" id="AUTOGENERATED-neural-network"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
@ -142,8 +142,9 @@ kept independently and each row and column will be kept or not kept together.
|
||||
* <b>keep_prob</b>: A Python float. The probability that each element is kept.
|
||||
* <b>noise_shape</b>: A 1-D `Tensor` of type `int32`, representing the
|
||||
shape for randomly generated keep/drop flags.
|
||||
* <b>seed</b>: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
* <b>name</b>: A name for this operation (optional).
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
@ -734,8 +735,8 @@ Looks up `ids` in a list of embedding tensors.
|
||||
|
||||
This function is used to perform parallel lookups on the list of
|
||||
tensors in `params`. It is a generalization of
|
||||
[`tf.gather()`](array_ops.md#gather), where `params` is interpreted
|
||||
as a partition of a larger embedding tensor.
|
||||
[`tf.gather()`](../../api_docs/python/array_ops.md#gather), where `params` is
|
||||
interpreted as a partition of a larger embedding tensor.
|
||||
|
||||
If `len(params) > 1`, each element `id` of `ids` is partitioned between
|
||||
the elements of `params` by computing `p = id % len(params)`, and is
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Sparse Tensors <a class="md-anchor" id="AUTOGENERATED-sparse-tensors"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
# Variables <a class="md-anchor" id="AUTOGENERATED-variables"></a>
|
||||
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
|
||||
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
|
||||
## Contents
|
||||
@ -330,7 +330,7 @@ This is not a graph construction method, it does not add ops to the graph.
|
||||
|
||||
This convenience method requires a session where the graph containing this
|
||||
variable has been launched. If no session is passed, the default session is
|
||||
used. See the [Session class](client.md#Session) for more information on
|
||||
used. See the [Session class](../../api_docs/python/client.md#Session) for more information on
|
||||
launching a graph and on sessions.
|
||||
|
||||
```python
|
||||
@ -1008,8 +1008,9 @@ Returns an initializer that generates Tensors with a normal distribution.
|
||||
to generate.
|
||||
* <b>stddev</b>: a python scalar or a scalar tensor. Standard deviation of the
|
||||
random values to generate.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
||||
@ -1034,8 +1035,9 @@ neural network weights and filters.
|
||||
to generate.
|
||||
* <b>stddev</b>: a python scalar or a scalar tensor. Standard deviation of the
|
||||
random values to generate.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
||||
@ -1056,8 +1058,9 @@ Returns an initializer that generates Tensors with a uniform distribution.
|
||||
of random values to generate.
|
||||
* <b>maxval</b>: a python scalar or a scalar tensor. upper bound of the range
|
||||
of random values to generate.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
||||
@ -1089,8 +1092,9 @@ numerically computed: for a linear layer it's 1.0, relu: ~1.43, tanh: ~1.15.
|
||||
|
||||
|
||||
* <b>factor</b>: Float. A multiplicative factor by which the values will be scaled.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
* <b>seed</b>: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
##### Returns: <a class="md-anchor" id="AUTOGENERATED-returns-"></a>
|
||||
|
||||
@ -1113,7 +1117,8 @@ useful for training embedding models and similar lookup-based networks, since
|
||||
only a small subset of embedding vectors change in any given step.
|
||||
|
||||
Since a sparse update of a large tensor may be generated automatically during
|
||||
gradient computation (as in the gradient of [`tf.gather`](array_ops.md#gather)),
|
||||
gradient computation (as in the gradient of
|
||||
[`tf.gather`](../../api_docs/python/array_ops.md#gather)),
|
||||
an [`IndexedSlices`](#IndexedSlices) class is provided that encapsulates a set
|
||||
of sparse indices and values. `IndexedSlices` objects are detected and handled
|
||||
automatically by the optimizers in most cases.
|
||||
@ -1328,10 +1333,10 @@ dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]
|
||||
|
||||
The `IndexedSlices` class is used principally in the definition of
|
||||
gradients for operations that have sparse gradients
|
||||
(e.g. [`tf.gather`](array_ops.md#gather)).
|
||||
(e.g. [`tf.gather`](../../api_docs/python/array_ops.md#gather)).
|
||||
|
||||
Contrast this representation with
|
||||
[`SparseTensor`](sparse_ops.md#SparseTensor),
|
||||
[`SparseTensor`](../../api_docs/python/sparse_ops.md#SparseTensor),
|
||||
which uses multi-dimensional indices and scalar values.
|
||||
|
||||
- - -
|
||||
|
@ -950,8 +950,8 @@ There are two ways to use the moving averages for evaluations:
|
||||
for a given variable.
|
||||
* Build a model normally but load the checkpoint files to evaluate by using
|
||||
the shadow variable names. For this use the `average_name()` method. See
|
||||
the [Saver class](train.md#Saver) for more information on restoring saved
|
||||
variables.
|
||||
the [Saver class](../../api_docs/python/train.md#Saver) for more
|
||||
information on restoring saved variables.
|
||||
|
||||
Example of restoring the shadow variable values:
|
||||
|
||||
@ -1407,8 +1407,8 @@ The following ops output
|
||||
protocol buffers as serialized string tensors.
|
||||
|
||||
You can fetch the output of a summary op in a session, and pass it to
|
||||
a [SummaryWriter](train.md#SummaryWriter) to append it to an event
|
||||
file. Event files contain
|
||||
a [SummaryWriter](../../api_docs/python/train.md#SummaryWriter) to append it
|
||||
to an event file. Event files contain
|
||||
[`Event`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/util/event.proto)
|
||||
protos that can contain `Summary` protos along with the timestamp and
|
||||
step. You can then use TensorBoard to visualize the contents of the
|
||||
|
@ -8,10 +8,7 @@ your TensorFlow graph, plot quantitative metrics about the execution of your
|
||||
graph, and show additional data like images that pass through it. When
|
||||
TensorBoard is fully configured, it looks like this:
|
||||
|
||||
 If you're on
|
||||
desktop Chrome or Firefox, try playing around with [this live
|
||||
TensorBoard](/tensorboard/cifar.html).
|
||||
|
||||

|
||||
|
||||
|
||||
## Serializing the data <a class="md-anchor" id="AUTOGENERATED-serializing-the-data"></a>
|
||||
|
@ -199,7 +199,6 @@ loss and all these weight decay terms, as returned by the `loss()` function.
|
||||
We visualize it in TensorBoard with a [scalar_summary](../../api_docs/python/train.md#scalar_summary):
|
||||
|
||||

|
||||
###### [View this TensorBoard live! (Chrome/FF)](/tensorboard/cifar.html) <a class="md-anchor" id="AUTOGENERATED--view-this-tensorboard-live---chrome-ff----tensorboard-cifar.html-"></a>
|
||||
|
||||
We train the model using standard
|
||||
[gradient descent](https://en.wikipedia.org/wiki/Gradient_descent)
|
||||
@ -209,7 +208,6 @@ with a learning rate that
|
||||
over time.
|
||||
|
||||

|
||||
###### [View this TensorBoard live! (Chrome/FF)](/tensorboard/cifar.html) <a class="md-anchor" id="AUTOGENERATED--view-this-tensorboard-live---chrome-ff----tensorboard-cifar.html-"></a>
|
||||
|
||||
The `train()` function adds the operations needed to minimize the objective by
|
||||
calculating the gradient and updating the learned variables (see
|
||||
@ -459,6 +457,3 @@ components to build address your image classification problem.
|
||||
[Street View House Numbers (SVHN)](http://ufldl.stanford.edu/housenumbers/) data set.
|
||||
Fork the CIFAR-10 tutorial and swap in the SVHN as the input data. Try adapting
|
||||
the network architecture to improve predictive performance.
|
||||
|
||||
|
||||
|
||||
|
@ -132,9 +132,9 @@ class BaseSession(SessionInterface):
|
||||
"""Returns a context manager that makes this object the default session.
|
||||
|
||||
Use with the `with` keyword to specify that calls to
|
||||
[`Operation.run()`](framework.md#Operation.run) or
|
||||
[`Tensor.run()`](framework.md#Tensor.run) should be executed in
|
||||
this session.
|
||||
[`Operation.run()`](../../api_docs/python/framework.md#Operation.run) or
|
||||
[`Tensor.run()`](../../api_docs/python/framework.md#Tensor.run) should be
|
||||
executed in this session.
|
||||
|
||||
```python
|
||||
c = tf.constant(..)
|
||||
@ -219,30 +219,31 @@ class BaseSession(SessionInterface):
|
||||
method. A graph element can be one of the following types:
|
||||
|
||||
* If the *i*th element of `fetches` is an
|
||||
[`Operation`](framework.md#Operation), the *i*th return value
|
||||
will be `None`.
|
||||
[`Operation`](../../api_docs/python/framework.md#Operation), the *i*th
|
||||
return value will be `None`.
|
||||
* If the *i*th element of `fetches` is a
|
||||
[`Tensor`](framework.md#Tensor), the *i*th return value will
|
||||
be a numpy ndarray containing the value of that tensor.
|
||||
[`Tensor`](../../api_docs/python/framework.md#Tensor), the *i*th return
|
||||
value will be a numpy ndarray containing the value of that tensor.
|
||||
* If the *i*th element of `fetches` is a
|
||||
[`SparseTensor`](sparse_ops.md#SparseTensor), the *i*th
|
||||
return value will be a
|
||||
[`SparseTensorValue`](sparse_ops.md#SparseTensorValue)
|
||||
[`SparseTensor`](../../api_docs/python/sparse_ops.md#SparseTensor),
|
||||
the *i*th return value will be a
|
||||
[`SparseTensorValue`](../../api_docs/python/sparse_ops.md#SparseTensorValue)
|
||||
containing the value of that sparse tensor.
|
||||
|
||||
The optional `feed_dict` argument allows the caller to override
|
||||
the value of tensors in the graph. Each key in `feed_dict` can be
|
||||
one of the following types:
|
||||
|
||||
* If the key is a [`Tensor`](framework.md#Tensor), the
|
||||
* If the key is a [`Tensor`](../../api_docs/python/framework.md#Tensor), the
|
||||
value may be a Python scalar, string, list, or numpy ndarray
|
||||
that can be converted to the same `dtype` as that
|
||||
tensor. Additionally, if the key is a
|
||||
[placeholder](io_ops.md#placeholder), the shape of the value
|
||||
will be checked for compatibility with the placeholder.
|
||||
* If the key is a [`SparseTensor`](sparse_ops.md#SparseTensor),
|
||||
[placeholder](../../api_docs/python/io_ops.md#placeholder), the shape of
|
||||
the value will be checked for compatibility with the placeholder.
|
||||
* If the key is a
|
||||
[`SparseTensor`](../../api_docs/python/sparse_ops.md#SparseTensor),
|
||||
the value should be a
|
||||
[`SparseTensorValue`](sparse_ops.md#SparseTensorValue).
|
||||
[`SparseTensorValue`](../../api_docs/python/sparse_ops.md#SparseTensorValue).
|
||||
|
||||
Args:
|
||||
fetches: A single graph element, or a list of graph elements
|
||||
@ -441,8 +442,8 @@ class Session(BaseSession):
|
||||
```
|
||||
|
||||
A session may own resources, such as
|
||||
[variables](state_ops.md#Variable), [queues](io_ops.md#QueueBase),
|
||||
and [readers](io_ops.md#ReaderBase). It is important to release
|
||||
[variables](../../api_docs/python/state_ops.md#Variable), [queues](../../api_docs/python/io_ops.md#QueueBase),
|
||||
and [readers](../../api_docs/python/io_ops.md#ReaderBase). It is important to release
|
||||
these resources when they are no longer required. To do this, either
|
||||
invoke the [`close()`](#Session.close) method on the session, or use
|
||||
the session as a context manager. The following two examples are
|
||||
@ -526,9 +527,9 @@ class InteractiveSession(BaseSession):
|
||||
|
||||
The only difference with a regular `Session` is that an `InteractiveSession`
|
||||
installs itself as the default session on construction.
|
||||
The methods [`Tensor.eval()`](framework.md#Tensor.eval) and
|
||||
[`Operation.run()`](framework.md#Operation.run) will use that session
|
||||
to run ops.
|
||||
The methods [`Tensor.eval()`](../../api_docs/python/framework.md#Tensor.eval)
|
||||
and [`Operation.run()`](../../api_docs/python/framework.md#Operation.run)
|
||||
will use that session to run ops.
|
||||
|
||||
This is convenient in interactive shells and [IPython
|
||||
notebooks](http://ipython.org), as it avoids having to pass an explicit
|
||||
|
@ -41,7 +41,7 @@ class OpError(Exception):
|
||||
|
||||
*N.B.* If the failed op was synthesized at runtime, e.g. a `Send`
|
||||
or `Recv` op, there will be no corresponding
|
||||
[`Operation`](framework.md#Operation) object. In that case, this
|
||||
[`Operation`](../../api_docs/python/framework.md#Operation) object. In that case, this
|
||||
will return `None`, and you should instead use the
|
||||
[`OpError.node_def`](#OpError.node_def) to discover information about the
|
||||
op.
|
||||
@ -129,11 +129,12 @@ class CancelledError(OpError):
|
||||
"""Raised when an operation or step is cancelled.
|
||||
|
||||
For example, a long-running operation (e.g.
|
||||
[`queue.enqueue()`](io_ops.md#QueueBase.enqueue) may be cancelled by
|
||||
running another operation (e.g.
|
||||
[`queue.close(cancel_pending_enqueues=True)`](io_ops.md#QueueBase.close),
|
||||
or by [closing the session](client.md#Session.close). A step that is
|
||||
running such a long-running operation will fail by raising `CancelledError`.
|
||||
[`queue.enqueue()`](../../api_docs/python/io_ops.md#QueueBase.enqueue) may be
|
||||
cancelled by running another operation (e.g.
|
||||
[`queue.close(cancel_pending_enqueues=True)`](../../api_docs/python/io_ops.md#QueueBase.close),
|
||||
or by [closing the session](../../api_docs/python/client.md#Session.close).
|
||||
A step that is running such a long-running operation will fail by raising
|
||||
`CancelledError`.
|
||||
|
||||
@@__init__
|
||||
"""
|
||||
@ -165,10 +166,10 @@ class InvalidArgumentError(OpError):
|
||||
|
||||
This may occur, for example, if an operation is receives an input
|
||||
tensor that has an invalid value or shape. For example, the
|
||||
[`tf.matmul()`](math_ops.md#matmul) op will raise this error if it
|
||||
receives an input that is not a matrix, and the
|
||||
[`tf.reshape()`](array_ops.md#reshape) op will raise this error if
|
||||
the new shape does not match the number of elements in the input
|
||||
[`tf.matmul()`](../../api_docs/python/math_ops.md#matmul) op will raise this
|
||||
error if it receives an input that is not a matrix, and the
|
||||
[`tf.reshape()`](../../api_docs/python/array_ops.md#reshape) op will raise
|
||||
this error if the new shape does not match the number of elements in the input
|
||||
tensor.
|
||||
|
||||
@@__init__
|
||||
@ -198,8 +199,8 @@ class NotFoundError(OpError):
|
||||
"""Raised when a requested entity (e.g., a file or directory) was not found.
|
||||
|
||||
For example, running the
|
||||
[`tf.WholeFileReader.read()`](io_ops.md#WholeFileReader) operation
|
||||
could raise `NotFoundError` if it receives the name of a file that
|
||||
[`tf.WholeFileReader.read()`](../../api_docs/python/io_ops.md#WholeFileReader)
|
||||
operation could raise `NotFoundError` if it receives the name of a file that
|
||||
does not exist.
|
||||
|
||||
@@__init__
|
||||
@ -214,8 +215,8 @@ class AlreadyExistsError(OpError):
|
||||
"""Raised when an entity that we attempted to create already exists.
|
||||
|
||||
For example, running an operation that saves a file
|
||||
(e.g. [`tf.train.Saver.save()`](train.md#Saver.save)) could
|
||||
potentially raise this exception if an explicit filename for an
|
||||
(e.g. [`tf.train.Saver.save()`](../../api_docs/python/train.md#Saver.save))
|
||||
could potentially raise this exception if an explicit filename for an
|
||||
existing file was passed.
|
||||
|
||||
@@__init__
|
||||
@ -231,8 +232,8 @@ class PermissionDeniedError(OpError):
|
||||
"""Raised when the caller does not have permission to run an operation.
|
||||
|
||||
For example, running the
|
||||
[`tf.WholeFileReader.read()`](io_ops.md#WholeFileReader) operation
|
||||
could raise `PermissionDeniedError` if it receives the name of a
|
||||
[`tf.WholeFileReader.read()`](../../api_docs/python/io_ops.md#WholeFileReader)
|
||||
operation could raise `PermissionDeniedError` if it receives the name of a
|
||||
file for which the user does not have the read file permission.
|
||||
|
||||
@@__init__
|
||||
@ -277,8 +278,8 @@ class FailedPreconditionError(OpError):
|
||||
"""Operation was rejected because the system is not in a state to execute it.
|
||||
|
||||
This exception is most commonly raised when running an operation
|
||||
that reads a [`tf.Variable`](state_ops.md#Variable) before it has
|
||||
been initialized.
|
||||
that reads a [`tf.Variable`](../../api_docs/python/state_ops.md#Variable)
|
||||
before it has been initialized.
|
||||
|
||||
@@__init__
|
||||
"""
|
||||
@ -292,9 +293,11 @@ class FailedPreconditionError(OpError):
|
||||
class AbortedError(OpError):
|
||||
"""The operation was aborted, typically due to a concurrent action.
|
||||
|
||||
For example, running a [`queue.enqueue()`](io_ops.md#QueueBase.enqueue)
|
||||
For example, running a
|
||||
[`queue.enqueue()`](../../api_docs/python/io_ops.md#QueueBase.enqueue)
|
||||
operation may raise `AbortedError` if a
|
||||
[`queue.close()`](io_ops.md#QueueBase.close) operation previously ran.
|
||||
[`queue.close()`](../../api_docs/python/io_ops.md#QueueBase.close) operation
|
||||
previously ran.
|
||||
|
||||
@@__init__
|
||||
"""
|
||||
@ -308,9 +311,10 @@ class OutOfRangeError(OpError):
|
||||
"""Raised when an operation executed past the valid range.
|
||||
|
||||
This exception is raised in "end-of-file" conditions, such as when a
|
||||
[`queue.dequeue()`](io_ops.md#QueueBase.dequeue) operation is
|
||||
blocked on an empty queue, and a
|
||||
[`queue.close()`](io_ops.md#QueueBase.close) operation executes.
|
||||
[`queue.dequeue()`](../../api_docs/python/io_ops.md#QueueBase.dequeue)
|
||||
operation is blocked on an empty queue, and a
|
||||
[`queue.close()`](../../api_docs/python/io_ops.md#QueueBase.close)
|
||||
operation executes.
|
||||
|
||||
@@__init__
|
||||
"""
|
||||
@ -326,9 +330,9 @@ class UnimplementedError(OpError):
|
||||
|
||||
Some operations may raise this error when passed otherwise-valid
|
||||
arguments that it does not currently support. For example, running
|
||||
the [`tf.nn.max_pool()`](nn.md#max_pool) operation would raise this
|
||||
error if pooling was requested on the batch dimension, because this
|
||||
is not yet supported.
|
||||
the [`tf.nn.max_pool()`](../../api_docs/python/nn.md#max_pool) operation
|
||||
would raise this error if pooling was requested on the batch dimension,
|
||||
because this is not yet supported.
|
||||
|
||||
@@__init__
|
||||
"""
|
||||
@ -371,8 +375,8 @@ class DataLossError(OpError):
|
||||
"""Raised when unrecoverable data loss or corruption is encountered.
|
||||
|
||||
For example, this may be raised by running a
|
||||
[`tf.WholeFileReader.read()`](io_ops.md#WholeFileReader) operation,
|
||||
if the file is truncated while it is being read.
|
||||
[`tf.WholeFileReader.read()`](../../api_docs/python/io_ops.md#WholeFileReader)
|
||||
operation, if the file is truncated while it is being read.
|
||||
|
||||
@@__init__
|
||||
"""
|
||||
|
@ -18,9 +18,11 @@ tf.flags.DEFINE_boolean("print_hidden_regex", False,
|
||||
FLAGS = tf.flags.FLAGS
|
||||
|
||||
|
||||
# TODO(josh11b,wicke): Remove the ../../api_docs/python/ once the
|
||||
# website can handle it.
|
||||
PREFIX_TEXT = """
|
||||
Note: Functions taking `Tensor` arguments can also take anything
|
||||
accepted by [`tf.convert_to_tensor`](framework.md#convert_to_tensor).
|
||||
Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
[`tf.convert_to_tensor`](../../api_docs/python/framework.md#convert_to_tensor).
|
||||
"""
|
||||
|
||||
|
||||
|
@ -79,7 +79,7 @@ class Tensor(object):
|
||||
A `Tensor` is a symbolic handle to one of the outputs of an
|
||||
`Operation`. It does not hold the values of that operation's output,
|
||||
but instead provides a means of computing those values in a
|
||||
TensorFlow [`Session`](client.md#Session).
|
||||
TensorFlow [`Session`](../../api_docs/python/client.md#Session).
|
||||
|
||||
This class has two primary purposes:
|
||||
|
||||
@ -90,7 +90,7 @@ class Tensor(object):
|
||||
|
||||
2. After the graph has been launched in a session, the value of the
|
||||
`Tensor` can be computed by passing it to
|
||||
[`Session.run()`](client.md#Session.run).
|
||||
[`Session.run()`](../../api_docs/python/client.md#Session.run).
|
||||
`t.eval()` is a shortcut for calling
|
||||
`tf.get_default_session().run(t)`.
|
||||
|
||||
@ -204,8 +204,8 @@ class Tensor(object):
|
||||
|
||||
The shape is computed using shape inference functions that are
|
||||
registered for each `Operation` type using `tf.RegisterShape`.
|
||||
See [`TensorShape`](framework.md#TensorShape) for more details of what a shape
|
||||
represents.
|
||||
See [`TensorShape`](../../api_docs/python/framework.md#TensorShape) for more
|
||||
details of what a shape represents.
|
||||
|
||||
The inferred shape of a tensor is used to provide shape
|
||||
information without having to launch the graph in a session. This
|
||||
@ -393,8 +393,8 @@ class Tensor(object):
|
||||
|
||||
Args:
|
||||
feed_dict: A dictionary that maps `Tensor` objects to feed values.
|
||||
See [`Session.run()`](client.md#Session.run) for a description of
|
||||
the valid feed values.
|
||||
See [`Session.run()`](../../api_docs/python/client.md#Session.run) for a
|
||||
description of the valid feed values.
|
||||
session: (Optional.) The `Session` to be used to evaluate this tensor. If
|
||||
none, the default session will be used.
|
||||
|
||||
@ -614,10 +614,10 @@ class IndexedSlices(object):
|
||||
|
||||
The `IndexedSlices` class is used principally in the definition of
|
||||
gradients for operations that have sparse gradients
|
||||
(e.g. [`tf.gather`](array_ops.md#gather)).
|
||||
(e.g. [`tf.gather`](../../api_docs/python/array_ops.md#gather)).
|
||||
|
||||
Contrast this representation with
|
||||
[`SparseTensor`](sparse_ops.md#SparseTensor),
|
||||
[`SparseTensor`](../../api_docs/python/sparse_ops.md#SparseTensor),
|
||||
which uses multi-dimensional indices and scalar values.
|
||||
|
||||
@@__init__
|
||||
@ -869,15 +869,17 @@ class Operation(object):
|
||||
An `Operation` is a node in a TensorFlow `Graph` that takes zero or
|
||||
more `Tensor` objects as input, and produces zero or more `Tensor`
|
||||
objects as output. Objects of type `Operation` are created by
|
||||
calling a Python op constructor (such as [`tf.matmul()`](math_ops.md#matmul))
|
||||
or [`Graph.create_op()`](framework.md#Graph.create_op).
|
||||
calling a Python op constructor (such as
|
||||
[`tf.matmul()`](../../api_docs/python/math_ops.md#matmul))
|
||||
or [`Graph.create_op()`](../../api_docs/python/framework.md#Graph.create_op).
|
||||
|
||||
For example `c = tf.matmul(a, b)` creates an `Operation` of type
|
||||
"MatMul" that takes tensors `a` and `b` as input, and produces `c`
|
||||
as output.
|
||||
|
||||
After the graph has been launched in a session, an `Operation` can
|
||||
be executed by passing it to [`Session.run()`](client.md#Session.run).
|
||||
be executed by passing it to
|
||||
[`Session.run()`](../../api_docs/python/client.md#Session.run).
|
||||
`op.run()` is a shortcut for calling `tf.get_default_session().run(op)`.
|
||||
|
||||
@@name
|
||||
@ -1257,8 +1259,8 @@ class Operation(object):
|
||||
|
||||
Args:
|
||||
feed_dict: A dictionary that maps `Tensor` objects to feed values.
|
||||
See [`Session.run()`](client.md#Session.run) for a description of the
|
||||
valid feed values.
|
||||
See [`Session.run()`](../../api_docs/python/client.md#Session.run)
|
||||
for a description of the valid feed values.
|
||||
session: (Optional.) The `Session` to be used to run to this operation. If
|
||||
none, the default session will be used.
|
||||
"""
|
||||
@ -1424,14 +1426,16 @@ def set_shapes_for_outputs(op):
|
||||
class Graph(object):
|
||||
"""A TensorFlow computation, represented as a dataflow graph.
|
||||
|
||||
A `Graph` contains a set of [`Operation`](framework.md#Operation) objects,
|
||||
which represent units of computation; and [`Tensor`](framework.md#Tensor)
|
||||
objects, which represent the units of data that flow between operations.
|
||||
A `Graph` contains a set of
|
||||
[`Operation`](../../api_docs/python/framework.md#Operation) objects,
|
||||
which represent units of computation; and
|
||||
[`Tensor`](../../api_docs/python/framework.md#Tensor) objects, which represent
|
||||
the units of data that flow between operations.
|
||||
|
||||
A default `Graph` is always registered, and accessible by calling
|
||||
[`tf.get_default_graph()`](framework.md#get_default_graph). To add an
|
||||
operation to the default graph, simply call one of the functions that defines
|
||||
a new `Operation`:
|
||||
[`tf.get_default_graph()`](../../api_docs/python/framework.md#get_default_graph).
|
||||
To add an operation to the default graph, simply call one of the functions
|
||||
that defines a new `Operation`:
|
||||
|
||||
```
|
||||
c = tf.constant(4.0)
|
||||
@ -1439,7 +1443,7 @@ class Graph(object):
|
||||
```
|
||||
|
||||
Another typical usage involves the
|
||||
[`Graph.as_default()`](framework.md#Graph.as_default)
|
||||
[`Graph.as_default()`](../../api_docs/python/framework.md#Graph.as_default)
|
||||
context manager, which overrides the current default graph for the
|
||||
lifetime of the context:
|
||||
|
||||
@ -1470,9 +1474,9 @@ class Graph(object):
|
||||
that are identified by name. For convenience when building a large
|
||||
graph, collections can store groups of related objects: for
|
||||
example, the `tf.Variable` uses a collection (named
|
||||
[`tf.GraphKeys.VARIABLES`](framework.md#GraphKeys)) for all variables that are
|
||||
created during the construction of a graph. The caller may define
|
||||
additional collections by specifying a new name.
|
||||
[`tf.GraphKeys.VARIABLES`](../../api_docs/python/framework.md#GraphKeys)) for
|
||||
all variables that are created during the construction of a graph. The caller
|
||||
may define additional collections by specifying a new name.
|
||||
|
||||
@@add_to_collection
|
||||
@@get_collection
|
||||
@ -1581,7 +1585,7 @@ class Graph(object):
|
||||
After calling `g.finalize()`, no new operations can be added to
|
||||
`g`. This method is used to ensure that no operations are added
|
||||
to a graph when it is shared between multiple threads, for example
|
||||
when using a [`QueueRunner`](train.md#QueueRunner).
|
||||
when using a [`QueueRunner`](../../api_docs/python/train.md#QueueRunner).
|
||||
"""
|
||||
self._finalized = True
|
||||
|
||||
@ -1606,7 +1610,7 @@ class Graph(object):
|
||||
|
||||
The serialized `GraphDef` can be imported into another `Graph`
|
||||
(using [`import_graph_def()`](#import_graph_def)) or used with the
|
||||
[C++ Session API](../cc/index.md).
|
||||
[C++ Session API](../../api_docs/cc/index.md).
|
||||
|
||||
This method is thread-safe.
|
||||
|
||||
@ -2532,7 +2536,9 @@ class Graph(object):
|
||||
def device(dev):
|
||||
"""Wrapper for `Graph.device()` using the default graph.
|
||||
|
||||
See [`Graph.name_scope()`](framework.md#Graph.name_scope) for more details.
|
||||
See
|
||||
[`Graph.name_scope()`](../../api_docs/python/framework.md#Graph.name_scope)
|
||||
for more details.
|
||||
|
||||
Args:
|
||||
device_name_or_function: The device name or function to use in
|
||||
@ -2548,7 +2554,9 @@ def device(dev):
|
||||
def name_scope(name):
|
||||
"""Wrapper for `Graph.name_scope()` using the default graph.
|
||||
|
||||
See [`Graph.name_scope()`](framework.md#Graph.name_scope) for more details.
|
||||
See
|
||||
[`Graph.name_scope()`](../../api_docs/python/framework.md#Graph.name_scope)
|
||||
for more details.
|
||||
|
||||
Args:
|
||||
name: A name for the scope.
|
||||
@ -2563,7 +2571,7 @@ def name_scope(name):
|
||||
def control_dependencies(control_inputs):
|
||||
"""Wrapper for `Graph.control_dependencies()` using the default graph.
|
||||
|
||||
See [`Graph.control_dependencies()`](framework.md#Graph.control_dependencies)
|
||||
See [`Graph.control_dependencies()`](../../api_docs/python/framework.md#Graph.control_dependencies)
|
||||
for more details.
|
||||
|
||||
Args:
|
||||
@ -2890,17 +2898,20 @@ class GraphKeys(object):
|
||||
|
||||
* `VARIABLES`: the `Variable` objects that comprise a model, and
|
||||
must be saved and restored together. See
|
||||
[`tf.all_variables()`](state_ops.md#all_variables) for more details.
|
||||
[`tf.all_variables()`](../../api_docs/python/state_ops.md#all_variables)
|
||||
for more details.
|
||||
* `TRAINABLE_VARIABLES`: the subset of `Variable` objects that will
|
||||
be trained by an optimizer. See
|
||||
[`tf.trainable_variables()`](state_ops.md#trainable_variables)
|
||||
[`tf.trainable_variables()`](../../api_docs/python/state_ops.md#trainable_variables)
|
||||
for more details.
|
||||
* `SUMMARIES`: the summary `Tensor` objects that have been created
|
||||
in the graph. See [`tf.merge_all_summaries()`](train.md#merge_all_summaries)
|
||||
* `SUMMARIES`: the summary `Tensor` objects that have been created in the
|
||||
graph. See
|
||||
[`tf.merge_all_summaries()`](../../api_docs/python/train.md#merge_all_summaries)
|
||||
for more details.
|
||||
* `QUEUE_RUNNERS`: the `QueueRunner` objects that are used to
|
||||
produce input for a computation. See
|
||||
[`tf.start_queue_runners()`](train.md#start_queue_runners) for more details.
|
||||
[`tf.start_queue_runners()`](../../api_docs/python/train.md#start_queue_runners)
|
||||
for more details.
|
||||
"""
|
||||
|
||||
# Key to collect variables.Variable objects that must be saved and restored
|
||||
@ -2920,7 +2931,7 @@ class GraphKeys(object):
|
||||
def add_to_collection(name, value):
|
||||
"""Wrapper for `Graph.add_to_collection()` using the default graph.
|
||||
|
||||
See [`Graph.add_to_collection()`](framework.md#Graph.add_to_collection)
|
||||
See [`Graph.add_to_collection()`](../../api_docs/python/framework.md#Graph.add_to_collection)
|
||||
for more details.
|
||||
|
||||
Args:
|
||||
@ -2934,7 +2945,7 @@ def add_to_collection(name, value):
|
||||
def get_collection(key, scope=None):
|
||||
"""Wrapper for `Graph.get_collection()` using the default graph.
|
||||
|
||||
See [`Graph.get_collection()`](framework.md#Graph.get_collection)
|
||||
See [`Graph.get_collection()`](../../api_docs/python/framework.md#Graph.get_collection)
|
||||
for more details.
|
||||
|
||||
Args:
|
||||
|
@ -16,7 +16,7 @@ def get_seed(op_seed):
|
||||
graph, or for only specific operations.
|
||||
|
||||
For details on how the graph-level seed interacts with op seeds, see
|
||||
[`set_random_seed`](constant_op.md#set_random_seed).
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed).
|
||||
|
||||
Args:
|
||||
op_seed: integer.
|
||||
|
@ -334,10 +334,10 @@ class TensorShape(object):
|
||||
|
||||
If a tensor is produced by an operation of type `"Foo"`, its shape
|
||||
may be inferred if there is a registered shape function for
|
||||
`"Foo"`. See [`tf.RegisterShape()`](framework.md#RegisterShape)
|
||||
`"Foo"`. See [`tf.RegisterShape()`](../../api_docs/python/framework.md#RegisterShape)
|
||||
for details of shape
|
||||
functions and how to register them. Alternatively, the shape may be set
|
||||
explicitly using [`Tensor.set_shape()`](framework.md#Tensor.set_shape).
|
||||
explicitly using [`Tensor.set_shape()`](../../api_docs/python/framework.md#Tensor.set_shape).
|
||||
|
||||
@@merge_with
|
||||
@@concatenate
|
||||
|
@ -26,11 +26,13 @@ time they are evaluated.
|
||||
|
||||
The `seed` keyword argument in these functions acts in conjunction with
|
||||
the graph-level random seed. Changing either the graph-level seed using
|
||||
[`set_random_seed`](constant_op.md#set_random_seed) or the op-level seed
|
||||
will change the underlying seed of these operations. Setting neither graph-level
|
||||
nor op-level seed, results in a random seed for all operations.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for details on the
|
||||
interaction between operation-level and graph-level random seeds.
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) or the
|
||||
op-level seed will change the underlying seed of these operations. Setting
|
||||
neither graph-level nor op-level seed, results in a random seed for all
|
||||
operations.
|
||||
See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for details on the interaction between operation-level and graph-level random
|
||||
seeds.
|
||||
|
||||
### Examples:
|
||||
|
||||
|
@ -337,8 +337,9 @@ class RandomShuffleQueue(QueueBase):
|
||||
the number of tensors in each queue element.
|
||||
shapes: (Optional.) A list of fully-defined `TensorShape` objects,
|
||||
with the same length as `dtypes` or `None`.
|
||||
seed: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
shared_name: (Optional.) If non-empty, this queue will be shared under
|
||||
the given name across multiple sessions.
|
||||
name: Optional name for the queue operation.
|
||||
|
@ -12,8 +12,8 @@ def embedding_lookup(params, ids, name=None):
|
||||
|
||||
This function is used to perform parallel lookups on the list of
|
||||
tensors in `params`. It is a generalization of
|
||||
[`tf.gather()`](array_ops.md#gather), where `params` is interpreted
|
||||
as a partition of a larger embedding tensor.
|
||||
[`tf.gather()`](../../api_docs/python/array_ops.md#gather), where `params` is
|
||||
interpreted as a partition of a larger embedding tensor.
|
||||
|
||||
If `len(params) > 1`, each element `id` of `ids` is partitioned between
|
||||
the elements of `params` by computing `p = id % len(params)`, and is
|
||||
|
@ -172,8 +172,9 @@ def random_flip_up_down(image, seed=None):
|
||||
|
||||
Args:
|
||||
image: A 3-D tensor of shape `[height, width, channels].`
|
||||
seed: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
Returns:
|
||||
A 3-D tensor of the same type and shape as `image`.
|
||||
@ -195,8 +196,9 @@ def random_flip_left_right(image, seed=None):
|
||||
|
||||
Args:
|
||||
image: A 3-D tensor of shape `[height, width, channels].`
|
||||
seed: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
Returns:
|
||||
A 3-D tensor of the same type and shape as `image`.
|
||||
@ -563,8 +565,9 @@ def random_brightness(image, max_delta, seed=None):
|
||||
Args:
|
||||
image: 3-D tensor of shape `[height, width, channels]`.
|
||||
max_delta: float, must be non-negative.
|
||||
seed: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
Returns:
|
||||
3-D tensor of images of shape `[height, width, channels]`
|
||||
@ -591,8 +594,9 @@ def random_contrast(image, lower, upper, seed=None):
|
||||
image: 3-D tensor of shape `[height, width, channels]`.
|
||||
lower: float. Lower bound for the random contrast factor.
|
||||
upper: float. Upper bound for the random contrast factor.
|
||||
seed: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
Returns:
|
||||
3-D tensor of shape `[height, width, channels]`.
|
||||
@ -775,8 +779,9 @@ def random_crop(image, size, seed=None, name=None):
|
||||
Args:
|
||||
image: 3-D tensor of shape `[height, width, channels]`
|
||||
size: 1-D tensor with two elements, specifying target `[height, width]`
|
||||
seed: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create a random seed. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
name: A name for this operation (optional).
|
||||
|
||||
Returns:
|
||||
|
@ -32,8 +32,9 @@ def random_uniform_initializer(minval=0.0, maxval=1.0, seed=None):
|
||||
of random values to generate.
|
||||
maxval: a python scalar or a scalar tensor. upper bound of the range
|
||||
of random values to generate.
|
||||
seed: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
Returns:
|
||||
An initializer that generates Tensors with a uniform distribution.
|
||||
@ -50,8 +51,9 @@ def random_normal_initializer(mean=0.0, stddev=1.0, seed=None):
|
||||
to generate.
|
||||
stddev: a python scalar or a scalar tensor. Standard deviation of the
|
||||
random values to generate.
|
||||
seed: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
Returns:
|
||||
An initializer that generates Tensors with a normal distribution.
|
||||
@ -73,8 +75,9 @@ def truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None):
|
||||
to generate.
|
||||
stddev: a python scalar or a scalar tensor. Standard deviation of the
|
||||
random values to generate.
|
||||
seed: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
Returns:
|
||||
An initializer that generates Tensors with a truncated normal
|
||||
@ -104,8 +107,9 @@ def uniform_unit_scaling_initializer(factor=1.0, seed=None):
|
||||
|
||||
Args:
|
||||
factor: Float. A multiplicative factor by which the values will be scaled.
|
||||
seed: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
|
||||
Returns:
|
||||
An initializer that generates tensors with unit variance.
|
||||
@ -132,8 +136,9 @@ def _random_walk(shape, nonlinearity, dtype=types.float32, seed=None,
|
||||
nonlinearity: the brain python function for implementing the
|
||||
nonlinearity in tensor flow.
|
||||
dtype: The type of the output.
|
||||
seed: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
name: string. Optional name for the op.
|
||||
|
||||
Returns:
|
||||
@ -169,8 +174,9 @@ class _RandomWalkInitializer(object):
|
||||
Args:
|
||||
nonlinearity: the python tensorflow function that computes a nonlinearity
|
||||
in the graph, typically after a Wx+b type operation.
|
||||
seed: A Python integer. Used to create random seeds.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
"""
|
||||
self._nonlinearity = nonlinearity
|
||||
self._seed = seed
|
||||
|
@ -346,8 +346,9 @@ def dropout(x, keep_prob, noise_shape=None, seed=None, name=None):
|
||||
keep_prob: A Python float. The probability that each element is kept.
|
||||
noise_shape: A 1-D `Tensor` of type `int32`, representing the
|
||||
shape for randomly generated keep/drop flags.
|
||||
seed: A Python integer. Used to create a random seed.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
seed: A Python integer. Used to create random seeds. See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
name: A name for this operation (optional).
|
||||
|
||||
Returns:
|
||||
|
@ -34,7 +34,9 @@ def random_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32,
|
||||
of the normal distribution.
|
||||
dtype: The type of the output.
|
||||
seed: A Python integer. Used to create a random seed for the distribution.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
name: A name for the operation (optional).
|
||||
|
||||
Returns:
|
||||
@ -74,7 +76,9 @@ def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32,
|
||||
of the truncated normal distribution.
|
||||
dtype: The type of the output.
|
||||
seed: A Python integer. Used to create a random seed for the distribution.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
name: A name for the operation (optional).
|
||||
|
||||
Returns:
|
||||
@ -115,7 +119,9 @@ def random_uniform(shape, minval=0.0, maxval=1.0,
|
||||
the range of random values to generate.
|
||||
dtype: The type of the output.
|
||||
seed: A Python integer. Used to create a random seed for the distribution.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
name: A name for the operation (optional).
|
||||
|
||||
Returns:
|
||||
@ -151,7 +157,9 @@ def random_shuffle(value, seed=None, name=None):
|
||||
Args:
|
||||
value: A Tensor to be shuffled.
|
||||
seed: A Python integer. Used to create a random seed for the distribution.
|
||||
See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
|
||||
See
|
||||
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
|
||||
for behavior.
|
||||
name: A name for the operation (optional).
|
||||
|
||||
Returns:
|
||||
|
@ -47,7 +47,8 @@ useful for training embedding models and similar lookup-based networks, since
|
||||
only a small subset of embedding vectors change in any given step.
|
||||
|
||||
Since a sparse update of a large tensor may be generated automatically during
|
||||
gradient computation (as in the gradient of [`tf.gather`](array_ops.md#gather)),
|
||||
gradient computation (as in the gradient of
|
||||
[`tf.gather`](../../api_docs/python/array_ops.md#gather)),
|
||||
an [`IndexedSlices`](#IndexedSlices) class is provided that encapsulates a set
|
||||
of sparse indices and values. `IndexedSlices` objects are detected and handled
|
||||
automatically by the optimizers in most cases.
|
||||
|
@ -207,7 +207,7 @@ class Variable(object):
|
||||
|
||||
This convenience method requires a session where the graph containing this
|
||||
variable has been launched. If no session is passed, the default session is
|
||||
used. See the [Session class](client.md#Session) for more information on
|
||||
used. See the [Session class](../../api_docs/python/client.md#Session) for more information on
|
||||
launching a graph and on sessions.
|
||||
|
||||
```python
|
||||
|
@ -107,8 +107,8 @@ class ExponentialMovingAverage(object):
|
||||
for a given variable.
|
||||
* Build a model normally but load the checkpoint files to evaluate by using
|
||||
the shadow variable names. For this use the `average_name()` method. See
|
||||
the [Saver class](train.md#Saver) for more information on restoring saved
|
||||
variables.
|
||||
the [Saver class](../../api_docs/python/train.md#Saver) for more
|
||||
information on restoring saved variables.
|
||||
|
||||
Example of restoring the shadow variable values:
|
||||
|
||||
|
@ -75,8 +75,8 @@ The following ops output
|
||||
protocol buffers as serialized string tensors.
|
||||
|
||||
You can fetch the output of a summary op in a session, and pass it to
|
||||
a [SummaryWriter](train.md#SummaryWriter) to append it to an event
|
||||
file. Event files contain
|
||||
a [SummaryWriter](../../api_docs/python/train.md#SummaryWriter) to append it
|
||||
to an event file. Event files contain
|
||||
[`Event`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/util/event.proto)
|
||||
protos that can contain `Summary` protos along with the timestamp and
|
||||
step. You can then use TensorBoard to visualize the contents of the
|
||||
|
@ -6,7 +6,7 @@ from setuptools.dist import Distribution
|
||||
_VERSION = '0.5.0'
|
||||
|
||||
REQUIRED_PACKAGES = [
|
||||
'numpy >= 1.10.1',
|
||||
'numpy >= 1.9.2',
|
||||
'six >= 1.10.0',
|
||||
]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user