diff --git a/tensorflow/contrib/android/README.md b/tensorflow/contrib/android/README.md index b8d73bf24ce..db37bcf73d1 100644 --- a/tensorflow/contrib/android/README.md +++ b/tensorflow/contrib/android/README.md @@ -81,6 +81,11 @@ For documentation on building a self-contained AAR file with cmake, see [tensorflow/contrib/android/cmake](cmake). +### Makefile + +For documentation on building native TF libraries with make, including a CUDA-enabled variant for devices like the Nvidia Shield TV, see [tensorflow/contrib/makefile/README.md](../makefile/README.md) + + ## AssetManagerFileSystem This directory also contains a TensorFlow filesystem supporting the Android diff --git a/tensorflow/contrib/makefile/README.md b/tensorflow/contrib/makefile/README.md index 6959ca344fa..b0228c54350 100644 --- a/tensorflow/contrib/makefile/README.md +++ b/tensorflow/contrib/makefile/README.md @@ -130,6 +130,105 @@ adb shell '/data/local/tmp/benchmark \ For more details, see the [benchmark documentation](../../tools/benchmark). +## CUDA support for Tegra devices running Android (Nvidia Shield TV, etc) + +With the release of TF 1.6 and JetPack for Android 3.2 (currently pending), you can now build a version of TensorFlow for compatible devices according to the following instructions which will receive the full benefits of GPU acceleration. + +#### Environment setup: + +First, download and install JetPack for Android version 3.2 or greater from [Nvidia](https://developers.nvidia.com). Note that as of the TF 1.6 release the JetPack for Android 3.2 release is still pending, and regular JetPack for L4T will not work. + +```bash +git clone https://github.com/tensorflow/tensorflow.git +cd tensorflow +JETPACK=$HOME/JetPack_Android_3.2 +TEGRA_LIBS="$JETPACK/cuDNN/aarch64/cuda/lib64/libcudnn.so $JETPACK/cuda-9.0/extras/CUPTI/lib64/libcupti.so $JETPACK/cuda/targets/aarch64-linux-androideabi/lib64/libcufft.so" +``` + +#### Building all CUDA-enabled native binaries: +This will build CUDA-enabled versions of libtensorflow_inference.so and the benchmark binary. (libtensorflow_demo.so will also be built incidentally, but it does not support CUDA) + +```bash +NDK_ROOT=$JETPACK/android-ndk-r13b +CC_PREFIX=ccache tensorflow/contrib/makefile/build_all_android.sh -s tensorflow/contrib/makefile/sub_makefiles/android/Makefile.in -t "libtensorflow_inference.so libtensorflow_demo.so all" -a tegra +``` +(add -T on subsequent builds to skip protobuf downloading/building) + + +#### Testing the the CUDA-enabled benchmark via adb: +Build binaries first as above, then run: + +```bash +adb shell mkdir -p /data/local/tmp/lib64 +adb push $TEGRA_LIBS /data/local/tmp/lib64 +adb push tensorflow/contrib/makefile/gen/bin/android_arm64-v8a/benchmark /data/local/tmp +wget https://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/tensorflow_demo.apk +unzip tensorflow_demo.apk -d /tmp/tensorflow_demo +adb push /tmp/tensorflow_demo/assets/*.pb /data/local/tmp +adb shell "LD_LIBRARY_PATH=/data/local/tmp/lib64 /data/local/tmp/benchmark --graph=/data/local/tmp/tensorflow_inception_graph.pb" +``` + +#### Building the CUDA-enabled TensorFlow AAR with Bazel: +Build the native binaries first as above. Then, build the aar and package the native libs by executing the following: +```bash +mkdir -p /tmp/tf/jni/arm64-v8a +cp tensorflow/contrib/makefile/gen/lib/android_tegra/libtensorflow_*.so /tmp/tf/jni/arm64-v8a/ +cp $TEGRA_LIBS /tmp/tf/jni/arm64-v8a +bazel build //tensorflow/contrib/android:android_tensorflow_inference_java.aar +cp bazel-bin/tensorflow/contrib/android/android_tensorflow_inference_java.aar /tmp/tf/tensorflow.aar +cd /tmp/tf +chmod +w tensorflow.aar +zip -ur tensorflow.aar $(find jni -name *.so) +``` + +#### Building the CUDA-enabled TensorFlow Android demo with Bazel: +Build binaries first as above, then edit tensorflow/examples/android/BUILD and replace: +``` + srcs = [ + ":libtensorflow_demo.so", + "//tensorflow/contrib/android:libtensorflow_inference.so", + ], +``` +with: +``` +srcs = glob(["libs/arm64-v8a/*.so"]), +``` + +Then run: +```bash +# Create dir for native libs +mkdir -p tensorflow/examples/android/libs/arm64-v8a + +# Copy JetPack libs +cp $TEGRA_LIBS tensorflow/examples/android/libs/arm64-v8a + +# Copy native TensorFlow libraries +cp tensorflow/contrib/makefile/gen/lib/android_arm64-v8a/libtensorflow_*.so tensorflow/examples/android/libs/arm64-v8a/ + +# Build APK +bazel build -c opt --fat_apk_cpu=arm64-v8a tensorflow/android:tensorflow_demo + +# Install +adb install -r -f bazel-bin/tensorflow/examples/android/tensorflow_demo.apk +``` + +#### Building the CUDA-enabled Android demo with gradle/Android Studio: + +Add tensorflow/examples/android as an Android project in Android Studio as normal. + +Edit build.gradle and: +* set nativeBuildSystem = 'makefile' +* set cpuType = 'arm64-v8a' +* in "buildNativeMake", replace cpuType with 'tegra' (optional speedups like -T and ccache also work) +* set the environment "NDK_ROOT" var to $JETPACK/android-ndk-r13b + +Click "build apk" to build. + +Install: +```bash +adb install -r -f tensorflow/examples/android/gradleBuild/outputs/apk/debug/android-debug.apk +``` + ## iOS _Note: To use this library in an iOS application, see related instructions in