commit
b183be3b4d
@ -509,7 +509,7 @@ xla_test(
|
||||
)
|
||||
|
||||
# Tests the dot operation in some cases that can be performed via a
|
||||
# runtime call on some backends - e.g. a runtime call to to Eigen.
|
||||
# runtime call on some backends - e.g. a runtime call to Eigen.
|
||||
xla_test(
|
||||
name = "dot_operation_runtime_test",
|
||||
srcs = ["dot_operation_test.cc"],
|
||||
|
@ -196,7 +196,7 @@ class Binomial(distribution.Distribution):
|
||||
|
||||
@property
|
||||
def probs(self):
|
||||
"""Probability of of drawing a `1`."""
|
||||
"""Probability of drawing a `1`."""
|
||||
return self._probs
|
||||
|
||||
def _batch_shape_tensor(self):
|
||||
|
@ -160,7 +160,7 @@ class _VectorStudentT(transformed_distribution.TransformedDistribution):
|
||||
#### Examples
|
||||
|
||||
A single instance of a "Vector Student's t-distribution" is defined by a mean
|
||||
vector of of length `k` and a scale matrix of shape `k x k`.
|
||||
vector of length `k` and a scale matrix of shape `k x k`.
|
||||
|
||||
Extra leading dimensions, if provided, allow for batches.
|
||||
|
||||
|
@ -165,7 +165,7 @@ class _LinearEmbeddingLookupArguments(
|
||||
"combiner"])):
|
||||
"""Represents the information needed from a column for embedding lookup.
|
||||
|
||||
Used to to compute DNN inputs and weighted sum.
|
||||
Used to compute DNN inputs and weighted sum.
|
||||
"""
|
||||
pass
|
||||
|
||||
@ -184,7 +184,7 @@ class _DeepEmbeddingLookupArguments(
|
||||
"trainable"])):
|
||||
"""Represents the information needed from a column for embedding lookup.
|
||||
|
||||
Used to to compute DNN inputs and weighted sum.
|
||||
Used to compute DNN inputs and weighted sum.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
@ -938,7 +938,7 @@ def convolution(inputs,
|
||||
with "NC".
|
||||
num_outputs: Integer, the number of output filters.
|
||||
kernel_size: A sequence of N positive integers specifying the spatial
|
||||
dimensions of of the filters. Can be a single integer to specify the same
|
||||
dimensions of the filters. Can be a single integer to specify the same
|
||||
value for all spatial dimensions.
|
||||
stride: A sequence of N positive integers specifying the stride at which to
|
||||
compute output. Can be a single integer to specify the same value for all
|
||||
|
@ -88,7 +88,7 @@ def bucket(tensors,
|
||||
This function is implemented using several queues. A `QueueRunner` for the
|
||||
queues is added to the current `Graph`'s `QUEUE_RUNNER` collection.
|
||||
|
||||
As the returned tensors are the result of of a dequeue operation, evaluating
|
||||
As the returned tensors are the result of a dequeue operation, evaluating
|
||||
them will throw a `tf.errors.OutOfRangeError` when the input queue is
|
||||
exhausted. If these tensors are feeding another input queue, its queue runner
|
||||
will catch this exception, however, if they are used in your main thread
|
||||
|
@ -329,7 +329,7 @@ class EvaluateRepeatedlyTest(test.TestCase):
|
||||
if not gfile.Exists(checkpoint_dir):
|
||||
gfile.MakeDirs(checkpoint_dir)
|
||||
|
||||
# We need a variable that that the saver will try to restore.
|
||||
# We need a variable that the saver will try to restore.
|
||||
variables.get_or_create_global_step()
|
||||
|
||||
# Run with placeholders. If we actually try to evaluate this, we'd fail
|
||||
@ -394,7 +394,7 @@ class EvaluateRepeatedlyTest(test.TestCase):
|
||||
'evaluate_with_eval_feed_dict')
|
||||
self._train_model(checkpoint_dir, num_steps=1)
|
||||
|
||||
# We need a variable that that the saver will try to restore.
|
||||
# We need a variable that the saver will try to restore.
|
||||
variables.get_or_create_global_step()
|
||||
|
||||
# Create a variable and an eval op that increments it with a placeholder.
|
||||
|
@ -722,7 +722,7 @@ class OpKernelContext {
|
||||
StringPiece output_name, const TensorShape& output_shape,
|
||||
Tensor** output) TF_MUST_USE_RESULT;
|
||||
|
||||
// Tries to reuse one of of the inputs given in input_indices as a temporary.
|
||||
// Tries to reuse one of the inputs given in input_indices as a temporary.
|
||||
// If none of the given inputs can be forwarded, calls
|
||||
// allocate_temp() to allocate a new temporary buffer.
|
||||
Status forward_input_or_allocate_temp(
|
||||
|
@ -149,7 +149,7 @@ struct FusedBatchNormGrad<CPUDevice, T> {
|
||||
typename TTypes<T>::Vec scale_backprop(scale_backprop_output->vec<T>());
|
||||
typename TTypes<T>::Vec offset_backprop(offset_backprop_output->vec<T>());
|
||||
|
||||
// Note: the following formulas are used to to compute the gradients for
|
||||
// Note: the following formulas are used to compute the gradients for
|
||||
// back propagation.
|
||||
// x_backprop = scale * rsqrt(variance + epsilon) *
|
||||
// [y_backprop - mean(y_backprop) - (x - mean(x)) *
|
||||
|
@ -32,7 +32,7 @@ limitations under the License.
|
||||
#ifdef COMPILER_MSVC
|
||||
// msvc does not support unroll. One could try the loop pragma but we need to
|
||||
// take a closer look if this generates better code in this case. For now let
|
||||
// the compiler take care of of it.
|
||||
// the compiler take care of it.
|
||||
#define UNROLL
|
||||
#else
|
||||
#define UNROLL _Pragma("unroll")
|
||||
|
@ -29,7 +29,7 @@ namespace internal {
|
||||
//
|
||||
// The representation is an open-addressed hash table. Conceptually,
|
||||
// the representation is a flat array of entries. However we
|
||||
// structure it as an array of of buckets where each bucket holds
|
||||
// structure it as an array of buckets where each bucket holds
|
||||
// kWidth entries along with metadata for the kWidth entries. The
|
||||
// metadata marker is
|
||||
//
|
||||
|
@ -741,7 +741,7 @@ class SeparableConv2D(Conv2D):
|
||||
filters: Integer, the dimensionality of the output space (i.e. the number
|
||||
of filters in the convolution).
|
||||
kernel_size: A tuple or list of 2 integers specifying the spatial
|
||||
dimensions of of the filters. Can be a single integer to specify the same
|
||||
dimensions of the filters. Can be a single integer to specify the same
|
||||
value for all spatial dimensions.
|
||||
strides: A tuple or list of 2 positive integers specifying the strides
|
||||
of the convolution. Can be a single integer to specify the same value for
|
||||
@ -950,7 +950,7 @@ def separable_conv2d(inputs,
|
||||
filters: Integer, the dimensionality of the output space (i.e. the number
|
||||
of filters in the convolution).
|
||||
kernel_size: A tuple or list of 2 integers specifying the spatial
|
||||
dimensions of of the filters. Can be a single integer to specify the same
|
||||
dimensions of the filters. Can be a single integer to specify the same
|
||||
value for all spatial dimensions.
|
||||
strides: A tuple or list of 2 positive integers specifying the strides
|
||||
of the convolution. Can be a single integer to specify the same value for
|
||||
@ -1033,7 +1033,7 @@ class Conv2DTranspose(Conv2D):
|
||||
filters: Integer, the dimensionality of the output space (i.e. the number
|
||||
of filters in the convolution).
|
||||
kernel_size: A tuple or list of 2 positive integers specifying the spatial
|
||||
dimensions of of the filters. Can be a single integer to specify the same
|
||||
dimensions of the filters. Can be a single integer to specify the same
|
||||
value for all spatial dimensions.
|
||||
strides: A tuple or list of 2 positive integers specifying the strides
|
||||
of the convolution. Can be a single integer to specify the same value for
|
||||
@ -1233,7 +1233,7 @@ def conv2d_transpose(inputs,
|
||||
filters: Integer, the dimensionality of the output space (i.e. the number
|
||||
of filters in the convolution).
|
||||
kernel_size: A tuple or list of 2 positive integers specifying the spatial
|
||||
dimensions of of the filters. Can be a single integer to specify the same
|
||||
dimensions of the filters. Can be a single integer to specify the same
|
||||
value for all spatial dimensions.
|
||||
strides: A tuple or list of 2 positive integers specifying the strides
|
||||
of the convolution. Can be a single integer to specify the same value for
|
||||
@ -1492,7 +1492,7 @@ def conv3d_transpose(inputs,
|
||||
filters: Integer, the dimensionality of the output space (i.e. the number
|
||||
of filters in the convolution).
|
||||
kernel_size: A tuple or list of 3 positive integers specifying the spatial
|
||||
dimensions of of the filters. Can be a single integer to specify the same
|
||||
dimensions of the filters. Can be a single integer to specify the same
|
||||
value for all spatial dimensions.
|
||||
strides: A tuple or list of 3 positive integers specifying the strides
|
||||
of the convolution. Can be a single integer to specify the same value for
|
||||
|
@ -95,7 +95,7 @@ class DirichletMultinomial(distribution.Distribution):
|
||||
The last `concentration` dimension parametrizes a single Dirichlet-Multinomial
|
||||
distribution. When calling distribution functions (e.g., `dist.prob(counts)`),
|
||||
`concentration`, `total_count` and `counts` are broadcast to the same shape.
|
||||
The last dimension of of `counts` corresponds single Dirichlet-Multinomial
|
||||
The last dimension of `counts` corresponds single Dirichlet-Multinomial
|
||||
distributions.
|
||||
|
||||
Distribution parameters are automatically broadcast in all functions; see
|
||||
|
@ -193,7 +193,7 @@ class Multinomial(distribution.Distribution):
|
||||
|
||||
@property
|
||||
def probs(self):
|
||||
"""Probability of of drawing a `1` in that coordinate."""
|
||||
"""Probability of drawing a `1` in that coordinate."""
|
||||
return self._probs
|
||||
|
||||
def _batch_shape_tensor(self):
|
||||
|
@ -37,7 +37,7 @@ from tensorflow.python.ops import nn
|
||||
|
||||
def assert_close(
|
||||
x, y, data=None, summarize=None, message=None, name="assert_close"):
|
||||
"""Assert that that x and y are within machine epsilon of each other.
|
||||
"""Assert that x and y are within machine epsilon of each other.
|
||||
|
||||
Args:
|
||||
x: Floating-point `Tensor`
|
||||
|
@ -78,7 +78,7 @@ def summary_scope(name, family=None, default_name=None, values=None):
|
||||
If `family` is set, then the tag name will be '<family>/<scope_name>', where
|
||||
`scope_name` is `<outer_scope>/<family>/<name>`. This ensures that `family`
|
||||
is always the prefix of the tag (and unmodified), while ensuring the scope
|
||||
respects the outer scope from this this summary was created.
|
||||
respects the outer scope from this summary was created.
|
||||
|
||||
Args:
|
||||
name: A name for the generated summary node.
|
||||
|
@ -445,7 +445,7 @@ class DocGenerator(object):
|
||||
'--base_dir',
|
||||
type=str,
|
||||
default=default_base_dir,
|
||||
help='Base directory to to strip from file names referenced in docs.')
|
||||
help='Base directory to strip from file names referenced in docs.')
|
||||
|
||||
def parse_known_args(self):
|
||||
flags, _ = self.argument_parser.parse_known_args()
|
||||
|
Loading…
x
Reference in New Issue
Block a user