Separate mirrored call_for_each_replica to its own file
Both ParameterServer and Mirrored uses this, and itself is complicated enough. This also fix a issue that you can't strategy.run(tf.function) under CentralStorageStrategy, by applying the same workaround we have in MirroredStrategy. PiperOrigin-RevId: 304437119 Change-Id: I6a7a67b88e7a5b7217aa9ffe05882d0ef4097896
This commit is contained in:
parent
f2bde78c4c
commit
b16d24a342
|
@ -255,22 +255,17 @@ py_library(
|
|||
)
|
||||
|
||||
py_library(
|
||||
name = "mirrored_strategy",
|
||||
srcs = ["mirrored_strategy.py"],
|
||||
name = "mirrored_run",
|
||||
srcs = ["mirrored_run.py"],
|
||||
deps = [
|
||||
":cross_device_ops",
|
||||
":device_util",
|
||||
":distribute_lib",
|
||||
":input_lib",
|
||||
":multi_worker_util",
|
||||
":numpy_dataset",
|
||||
":reduce_util",
|
||||
":shared_variable_creator",
|
||||
":values",
|
||||
"//tensorflow/python:array_ops",
|
||||
"//tensorflow/python:config",
|
||||
"//tensorflow/python:constant_op",
|
||||
"//tensorflow/python:control_flow_ops",
|
||||
"//tensorflow/python:device",
|
||||
"//tensorflow/python:dtypes",
|
||||
"//tensorflow/python:framework_ops",
|
||||
|
@ -284,9 +279,33 @@ py_library(
|
|||
"//tensorflow/python:variable_scope",
|
||||
"//tensorflow/python/autograph/core",
|
||||
"//tensorflow/python/autograph/impl",
|
||||
"//tensorflow/python/distribute/cluster_resolver:cluster_resolver_lib",
|
||||
"//tensorflow/python/eager:context",
|
||||
"//tensorflow/python/eager:def_function",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "mirrored_strategy",
|
||||
srcs = ["mirrored_strategy.py"],
|
||||
deps = [
|
||||
":cross_device_ops",
|
||||
":device_util",
|
||||
":distribute_lib",
|
||||
":input_lib",
|
||||
":mirrored_run",
|
||||
":multi_worker_util",
|
||||
":numpy_dataset",
|
||||
":reduce_util",
|
||||
":values",
|
||||
"//tensorflow/python:array_ops",
|
||||
"//tensorflow/python:constant_op",
|
||||
"//tensorflow/python:control_flow_ops",
|
||||
"//tensorflow/python:device",
|
||||
"//tensorflow/python:dtypes",
|
||||
"//tensorflow/python:framework_ops",
|
||||
"//tensorflow/python:util",
|
||||
"//tensorflow/python/distribute/cluster_resolver:cluster_resolver_lib",
|
||||
"//tensorflow/python/eager:context",
|
||||
"//tensorflow/python/eager:tape",
|
||||
],
|
||||
)
|
||||
|
@ -297,7 +316,7 @@ py_library(
|
|||
visibility = ["//tensorflow:internal"],
|
||||
deps = [
|
||||
":input_lib",
|
||||
":mirrored_strategy",
|
||||
":mirrored_run",
|
||||
":numpy_dataset",
|
||||
"//tensorflow/core:protos_all_py",
|
||||
"//tensorflow/python:array_ops",
|
||||
|
|
|
@ -0,0 +1,454 @@
|
|||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Class MirroredStrategy implementing tf.distribute.Strategy."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import contextlib
|
||||
import functools
|
||||
import threading
|
||||
import weakref
|
||||
|
||||
from tensorflow.python import pywrap_tfe
|
||||
from tensorflow.python.autograph.core import ag_ctx as autograph_ctx
|
||||
from tensorflow.python.autograph.impl import api as autograph
|
||||
from tensorflow.python.distribute import distribute_lib
|
||||
from tensorflow.python.distribute import shared_variable_creator
|
||||
from tensorflow.python.distribute import values
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import device as tf_device
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import tensor_util
|
||||
from tensorflow.python.ops import summary_ops_v2
|
||||
from tensorflow.python.ops import variable_scope
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.training import coordinator
|
||||
|
||||
|
||||
def call_for_each_replica(strategy, fn, args=None, kwargs=None):
|
||||
"""Call `fn` on each worker devices(replica).
|
||||
|
||||
It's highly recommended to wrap the call to this function inside a
|
||||
`tf.function`, otherwise the performance is poor.
|
||||
|
||||
Args:
|
||||
strategy: `tf.distribute.Strategy`.
|
||||
fn: function to call on each worker devices.
|
||||
args: positional arguments to `fn`.
|
||||
kwargs: keyword arguments to `fn`.
|
||||
|
||||
Returns:
|
||||
Wrapped returned value of `fn` from all replicas.
|
||||
"""
|
||||
if args is None:
|
||||
args = ()
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
|
||||
if isinstance(fn, def_function.Function):
|
||||
if strategy not in _cfer_fn_cache:
|
||||
_cfer_fn_cache[strategy] = weakref.WeakKeyDictionary()
|
||||
wrapped = _cfer_fn_cache[strategy].get(fn)
|
||||
if wrapped is None:
|
||||
# We need to wrap fn such that it triggers _call_for_each_replica inside
|
||||
# the tf.function. We use _clone() instead of @tf.function wrapped
|
||||
# call_for_each_replica() because we would like to retain the arguments to
|
||||
# the @tf.function decorator of fn.
|
||||
wrapped = fn._clone( # pylint: disable=protected-access
|
||||
python_function=functools.partial(call_for_each_replica, strategy,
|
||||
fn.python_function))
|
||||
_cfer_fn_cache[strategy][fn] = wrapped
|
||||
return wrapped(args, kwargs)
|
||||
|
||||
if context.executing_eagerly():
|
||||
logging.log_first_n(
|
||||
logging.WARN, "Using %s eagerly has significant "
|
||||
"overhead currently. We will be working on improving "
|
||||
"this in the future, but for now please wrap "
|
||||
"`call_for_each_replica` or `experimental_run` or "
|
||||
"`experimental_run_v2` inside a tf.function to get "
|
||||
"the best performance." % strategy.__class__.__name__, 5)
|
||||
else:
|
||||
# When a tf.function is wrapped to trigger _call_for_each_replica (see
|
||||
# the other branch above), AutoGraph stops conversion at
|
||||
# _call_for_each_replica itself (TF library functions are whitelisted).
|
||||
# This makes sure that the Python function that originally passed to
|
||||
# the tf.function is still converted.
|
||||
fn = autograph.tf_convert(fn, autograph_ctx.control_status_ctx())
|
||||
|
||||
return _call_for_each_replica(strategy, fn, args, kwargs)
|
||||
|
||||
|
||||
# Per strategy cache for call_for_each_replica def_function.Function objects.
|
||||
_cfer_fn_cache = weakref.WeakKeyDictionary()
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def _enter_graph(g, eager, creator_stack=None):
|
||||
"""Context manager for selecting a graph and maybe eager mode."""
|
||||
if eager:
|
||||
with g.as_default(), context.eager_mode():
|
||||
if creator_stack is not None:
|
||||
g._variable_creator_stack = creator_stack # pylint: disable=protected-access
|
||||
yield
|
||||
else:
|
||||
with g.as_default():
|
||||
if creator_stack is not None:
|
||||
g._variable_creator_stack = creator_stack # pylint: disable=protected-access
|
||||
yield
|
||||
|
||||
|
||||
def _cpu_device(device):
|
||||
cpu_device = tf_device.DeviceSpec.from_string(device)
|
||||
cpu_device = cpu_device.replace(device_type="CPU", device_index=0)
|
||||
return cpu_device.to_string()
|
||||
|
||||
|
||||
class _RequestedStop(Exception): # pylint: disable=g-bad-exception-name
|
||||
pass
|
||||
|
||||
|
||||
def _call_for_each_replica(distribution, fn, args, kwargs):
|
||||
"""Run `fn` in separate threads, once per replica/worker device.
|
||||
|
||||
Args:
|
||||
distribution: the DistributionStrategy object.
|
||||
fn: function to run (will be run once per replica, each in its own thread).
|
||||
args: positional arguments for `fn`
|
||||
kwargs: keyword arguments for `fn`.
|
||||
|
||||
Returns:
|
||||
Merged return value of `fn` across all replicas.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If fn() calls get_replica_context().merge_call() a different
|
||||
number of times from the available devices.
|
||||
"""
|
||||
# TODO(josh11b): Add this option once we add synchronization to variable
|
||||
# creation. Until then, this is pretty unsafe to use.
|
||||
run_concurrently = False
|
||||
if not context.executing_eagerly():
|
||||
# Needed for per-thread device, etc. contexts in graph mode.
|
||||
ops.get_default_graph().switch_to_thread_local()
|
||||
|
||||
coord = coordinator.Coordinator(clean_stop_exception_types=(_RequestedStop,))
|
||||
|
||||
shared_variable_store = {}
|
||||
devices = distribution.extended.worker_devices
|
||||
|
||||
# TODO(isaprykin): Create these threads once instead of during every call.
|
||||
threads = []
|
||||
for index in range(len(devices)):
|
||||
variable_creator_fn = shared_variable_creator.make_fn(
|
||||
shared_variable_store, index)
|
||||
t = _MirroredReplicaThread(
|
||||
distribution, coord, index, devices, variable_creator_fn, fn,
|
||||
values.select_replica(index, args),
|
||||
values.select_replica(index, kwargs))
|
||||
threads.append(t)
|
||||
|
||||
for t in threads:
|
||||
t.start()
|
||||
|
||||
# When `fn` starts `should_run` event is set on _MirroredReplicaThread
|
||||
# (`MRT`) threads. The execution waits until
|
||||
# `MRT.has_paused` is set, which indicates that either `fn` is
|
||||
# complete or a `get_replica_context().merge_call()` is called. If `fn` is
|
||||
# complete, then `MRT.done` is set to True. Otherwise, arguments
|
||||
# of `get_replica_context().merge_call` from all paused threads are grouped
|
||||
# and the `merge_fn` is performed. Results of the
|
||||
# `get_replica_context().merge_call` are then set to `MRT.merge_result`.
|
||||
# Each such `get_replica_context().merge_call` call returns the
|
||||
# `MRT.merge_result` for that thread when `MRT.should_run` event
|
||||
# is reset again. Execution of `fn` resumes.
|
||||
|
||||
try:
|
||||
with coord.stop_on_exception():
|
||||
all_done = False
|
||||
while not all_done and not coord.should_stop():
|
||||
done = []
|
||||
if run_concurrently:
|
||||
for t in threads:
|
||||
t.should_run.set()
|
||||
for t in threads:
|
||||
t.has_paused.wait()
|
||||
t.has_paused.clear()
|
||||
if coord.should_stop():
|
||||
return None
|
||||
done.append(t.done)
|
||||
else:
|
||||
for t in threads:
|
||||
t.should_run.set()
|
||||
t.has_paused.wait()
|
||||
t.has_paused.clear()
|
||||
if coord.should_stop():
|
||||
return None
|
||||
done.append(t.done)
|
||||
if coord.should_stop():
|
||||
return None
|
||||
all_done = all(done)
|
||||
if not all_done:
|
||||
if any(done):
|
||||
raise RuntimeError("Some replicas made a different number of "
|
||||
"replica_context().merge_call() calls.")
|
||||
# get_replica_context().merge_call() case
|
||||
merge_args = values.regroup(tuple(t.merge_args for t in threads))
|
||||
merge_kwargs = values.regroup(tuple(t.merge_kwargs for t in threads))
|
||||
# We capture the name_scope of the MRT when we call merge_fn
|
||||
# to ensure that if we have opened a name scope in the MRT,
|
||||
# it will be respected when executing the merge function. We only
|
||||
# capture the name_scope from the first MRT and assume it is
|
||||
# the same for all other MRTs.
|
||||
mtt_captured_name_scope = threads[0].captured_name_scope
|
||||
mtt_captured_var_scope = threads[0].captured_var_scope
|
||||
# Capture and merge the control dependencies from all the threads.
|
||||
mtt_captured_control_deps = set()
|
||||
for t in threads:
|
||||
mtt_captured_control_deps.update(t.captured_control_deps)
|
||||
with ops.name_scope(mtt_captured_name_scope),\
|
||||
ops.control_dependencies(mtt_captured_control_deps), \
|
||||
variable_scope.variable_scope(mtt_captured_var_scope):
|
||||
merge_result = threads[0].merge_fn(distribution, *merge_args,
|
||||
**merge_kwargs)
|
||||
for r, t in enumerate(threads):
|
||||
t.merge_result = values.select_replica(r, merge_result)
|
||||
finally:
|
||||
for t in threads:
|
||||
t.should_run.set()
|
||||
coord.join(threads)
|
||||
|
||||
return values.regroup(tuple(t.main_result for t in threads))
|
||||
|
||||
|
||||
class _MirroredReplicaThread(threading.Thread):
|
||||
"""A thread that runs() a function on a device."""
|
||||
|
||||
def __init__(self, dist, coord, replica_id, devices, variable_creator_fn,
|
||||
fn, args, kwargs):
|
||||
super(_MirroredReplicaThread, self).__init__()
|
||||
self.coord = coord
|
||||
self.distribution = dist
|
||||
self.devices = devices
|
||||
self.replica_id = replica_id
|
||||
self.variable_creator_fn = variable_creator_fn
|
||||
# State needed to run and return the results of `fn`.
|
||||
self.main_fn = fn
|
||||
self.main_args = args
|
||||
self.main_kwargs = kwargs
|
||||
self.main_result = None
|
||||
self.done = False
|
||||
# State needed to run the next merge_call() (if any) requested via
|
||||
# ReplicaContext.
|
||||
self.merge_fn = None
|
||||
self.merge_args = None
|
||||
self.merge_kwargs = None
|
||||
self.merge_result = None
|
||||
self.captured_name_scope = None
|
||||
self.captured_var_scope = None
|
||||
# We use a thread.Event for the main thread to signal when this
|
||||
# thread should start running (`should_run`), and another for
|
||||
# this thread to transfer control back to the main thread
|
||||
# (`has_paused`, either when it gets to a
|
||||
# `get_replica_context().merge_call` or when `fn` returns). In
|
||||
# either case the event starts cleared, is signaled by calling
|
||||
# set(). The receiving thread waits for the signal by calling
|
||||
# wait() and then immediately clearing the event using clear().
|
||||
self.should_run = threading.Event()
|
||||
self.has_paused = threading.Event()
|
||||
# These fields have to do with inheriting various contexts from the
|
||||
# parent thread:
|
||||
context.ensure_initialized()
|
||||
ctx = context.context()
|
||||
self.in_eager = ctx.executing_eagerly()
|
||||
self.record_thread_local_summary_state()
|
||||
self.record_thread_local_eager_context_state()
|
||||
self.context_device_policy = (
|
||||
pywrap_tfe.TFE_ContextGetDevicePlacementPolicy(
|
||||
ctx._context_handle)) # pylint: disable=protected-access
|
||||
self.graph = ops.get_default_graph()
|
||||
with ops.init_scope():
|
||||
self._init_in_eager = context.executing_eagerly()
|
||||
self._init_graph = ops.get_default_graph()
|
||||
self._variable_creator_stack = self.graph._variable_creator_stack[:] # pylint: disable=protected-access
|
||||
self._var_scope = variable_scope.get_variable_scope()
|
||||
# Adding a "/" at end lets us re-enter this scope later.
|
||||
self._name_scope = self.graph.get_name_scope()
|
||||
if self._name_scope:
|
||||
self._name_scope += "/"
|
||||
if self.replica_id > 0:
|
||||
if not self._name_scope:
|
||||
self._name_scope = ""
|
||||
self._name_scope += "replica_%d/" % self.replica_id
|
||||
|
||||
def run(self):
|
||||
self.should_run.wait()
|
||||
self.should_run.clear()
|
||||
try:
|
||||
if self.coord.should_stop():
|
||||
return
|
||||
self.restore_thread_local_summary_state()
|
||||
self.restore_thread_local_eager_context_state()
|
||||
# TODO(josh11b): Use current logical device instead of 0 here.
|
||||
with self.coord.stop_on_exception(), \
|
||||
_enter_graph(self._init_graph, self._init_in_eager), \
|
||||
_enter_graph(self.graph, self.in_eager,
|
||||
self._variable_creator_stack), \
|
||||
context.device_policy(self.context_device_policy), \
|
||||
_MirroredReplicaContext(self.distribution, constant_op.constant(
|
||||
self.replica_id, dtypes.int32)), \
|
||||
ops.device(self.devices[self.replica_id]), \
|
||||
ops.name_scope(self._name_scope), \
|
||||
variable_scope.variable_scope(
|
||||
self._var_scope, reuse=self.replica_id > 0), \
|
||||
variable_scope.variable_creator_scope(self.variable_creator_fn):
|
||||
self.main_result = self.main_fn(*self.main_args, **self.main_kwargs)
|
||||
self.done = True
|
||||
finally:
|
||||
self.has_paused.set()
|
||||
|
||||
def record_thread_local_summary_state(self):
|
||||
"""Record the thread local summary state in self."""
|
||||
# TODO(slebedev): is this still relevant? the referenced bug is closed.
|
||||
summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access
|
||||
self._summary_step = summary_state.step
|
||||
self._summary_writer = summary_state.writer
|
||||
self._summary_recording = summary_state.is_recording
|
||||
self._summary_recording_distribution_strategy = (
|
||||
summary_state.is_recording_distribution_strategy)
|
||||
|
||||
def restore_thread_local_summary_state(self):
|
||||
"""Restore thread local summary state from self."""
|
||||
# TODO(slebedev): is this still relevant? the referenced bug is closed.
|
||||
summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access
|
||||
summary_state.step = self._summary_step
|
||||
summary_state.writer = self._summary_writer
|
||||
summary_state.is_recording = self._summary_recording
|
||||
summary_state.is_recording_distribution_strategy = (
|
||||
self._summary_recording_distribution_strategy)
|
||||
|
||||
def record_thread_local_eager_context_state(self):
|
||||
ctx = context.context()
|
||||
eager_context_state = ctx._thread_local_data # pylint: disable=protected-access
|
||||
self._eager_context_op_callbacks = eager_context_state.op_callbacks
|
||||
# TODO(b/125892694): record other fields in EagerContext.
|
||||
|
||||
def restore_thread_local_eager_context_state(self):
|
||||
ctx = context.context()
|
||||
eager_context_state = ctx._thread_local_data # pylint: disable=protected-access
|
||||
eager_context_state.op_callbacks = self._eager_context_op_callbacks
|
||||
# TODO(b/125892694): record other fields in EagerContext.
|
||||
|
||||
|
||||
class _MirroredReplicaContext(distribute_lib.ReplicaContext):
|
||||
"""ReplicaContext for synchronized replica."""
|
||||
|
||||
def _merge_call(self, fn, args, kwargs):
|
||||
"""`merge_call()` implementation for synchronized replica.
|
||||
|
||||
This pauses the current replica thread and passes `fn` and its arguments to
|
||||
the main thread. The main thread will wait until all replicas pause, then
|
||||
invoke `fn` with grouped arugments. The current replica thread will continue
|
||||
after `fn` completes.
|
||||
|
||||
See `_call_for_each_replica` for the logic in the main thread.
|
||||
|
||||
Args:
|
||||
fn: a function that is called in cross replica context with grouped
|
||||
arguments from each replica. `fn` should returns grouped values.
|
||||
args: positional arguments to `fn`.
|
||||
kwargs: keyward arguments to `fn`.
|
||||
|
||||
Returns:
|
||||
Return value of `fn` for the current replica.
|
||||
|
||||
Raises:
|
||||
RuntimeError: when merge_call happens in a different graph, e.g. in a
|
||||
different tf.function, which is not supported now.
|
||||
_RequestedStop: when stop is requested.
|
||||
|
||||
"""
|
||||
t = threading.current_thread()
|
||||
assert isinstance(t, _MirroredReplicaThread)
|
||||
t.merge_fn = fn
|
||||
t.merge_args = args
|
||||
t.merge_kwargs = kwargs
|
||||
t.captured_name_scope = t.graph.get_name_scope()
|
||||
# Adding a "/" at end lets us re-enter this scope later.
|
||||
if t.captured_name_scope:
|
||||
t.captured_name_scope += "/"
|
||||
|
||||
t.captured_var_scope = variable_scope.get_variable_scope()
|
||||
t.captured_control_deps = t.graph._current_control_dependencies() # pylint: disable=protected-access
|
||||
|
||||
# It is problematic if `merge_call` is called under a different graph other
|
||||
# than the one that `_call_for_each_replica` is called under, there are
|
||||
# 3 cases this can happen:
|
||||
#
|
||||
# 1. The `fn` passed to `_call_for_each_replica` is decorated with
|
||||
# `tf.function` and there is a `merge_call` in `fn`. Since
|
||||
# MirroredStrategy traces a separate function per thread (per device),
|
||||
# and each trace takes a shared lock, the lock is never released by the
|
||||
# first thread and subsequent replica threads cannot proceed to trace
|
||||
# their own functions. This issue is addressed by always converting
|
||||
# `_call_for_each_replica(tf.function(f))` to
|
||||
# ``tf.function(_call_for_each_replica(f))`.` in
|
||||
# `MirroredStrategy._call_for_each_replica`.
|
||||
#
|
||||
# 2. The `fn` passed to `_call_for_each_replica` contains a nested
|
||||
# `tf.function`, and there is a `merge_call` in the nested `tf.function`.
|
||||
# In this case each thread can successfully trace its own function, but
|
||||
# since the `merge_fn` passed to `merge_call` is executed in the main
|
||||
# thread (where `_call_for_each_replica` is executed), it can't access
|
||||
# the tensors that come from different graphs.
|
||||
#
|
||||
# 3. The `fn` passed to `_call_for_each_replica` contains a control-flow
|
||||
# statement, and there is a `merge_call` inside the control-flow body,
|
||||
# `fn` or `_call_for_each_replica` is decorated with `tf.function`.
|
||||
# Control flow statement creates a separate graph for its body, similar
|
||||
# to #2, `merge_fn` executed in the main thread can't access the
|
||||
# tensors that come from different graphs.
|
||||
#
|
||||
# We raise an error for #2 and #3.
|
||||
if ops.get_default_graph() != t.graph:
|
||||
raise RuntimeError(
|
||||
"`merge_call` called while defining a new graph or a tf.function."
|
||||
" This can often happen if the function `fn` passed to"
|
||||
" `strategy.run()` contains a nested `@tf.function`, and the nested "
|
||||
"`@tf.function` contains a synchronization point, such as aggregating"
|
||||
" gradients (e.g, optimizer.apply_gradients), or if the function `fn`"
|
||||
" uses a control flow statement which contains a synchronization"
|
||||
" point in the body. Such behaviors are not yet supported. Instead,"
|
||||
" please avoid nested `tf.function`s or control flow statements that"
|
||||
" may potentially cross a synchronization boundary, for example,"
|
||||
" wrap the `fn` passed to `strategy.run` or the entire `strategy.run`"
|
||||
" inside a `tf.function` or move the control flow out of `fn`")
|
||||
|
||||
t.has_paused.set()
|
||||
t.should_run.wait()
|
||||
t.should_run.clear()
|
||||
if t.coord.should_stop():
|
||||
raise _RequestedStop()
|
||||
return t.merge_result
|
||||
|
||||
@property
|
||||
def devices(self):
|
||||
distribute_lib.require_replica_context(self)
|
||||
replica_id = tensor_util.constant_value(self._replica_id_in_sync_group)
|
||||
return [self._strategy.extended.worker_devices_by_replica[replica_id]]
|
|
@ -18,191 +18,33 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import contextlib
|
||||
import copy
|
||||
import functools
|
||||
import threading
|
||||
import weakref
|
||||
|
||||
from tensorflow.python import pywrap_tfe
|
||||
from tensorflow.python.autograph.core import ag_ctx as autograph_ctx
|
||||
from tensorflow.python.autograph.impl import api as autograph
|
||||
from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib
|
||||
from tensorflow.python.distribute import device_util
|
||||
from tensorflow.python.distribute import distribute_lib
|
||||
from tensorflow.python.distribute import input_lib
|
||||
from tensorflow.python.distribute import mirrored_run
|
||||
from tensorflow.python.distribute import multi_worker_util
|
||||
from tensorflow.python.distribute import numpy_dataset
|
||||
from tensorflow.python.distribute import reduce_util
|
||||
from tensorflow.python.distribute import shared_variable_creator
|
||||
from tensorflow.python.distribute import values
|
||||
from tensorflow.python.distribute.cluster_resolver import TFConfigClusterResolver
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.eager import tape
|
||||
from tensorflow.python.framework import config
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import device as tf_device
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import tensor_util
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import control_flow_ops
|
||||
from tensorflow.python.ops import summary_ops_v2
|
||||
from tensorflow.python.ops import variable_scope
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.training import coordinator
|
||||
from tensorflow.python.util import nest
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
# TODO(josh11b): Replace asserts in this file with if ...: raise ...
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def _enter_graph(g, eager, creator_stack=None):
|
||||
"""Context manager for selecting a graph and maybe eager mode."""
|
||||
if eager:
|
||||
with g.as_default(), context.eager_mode():
|
||||
if creator_stack is not None:
|
||||
g._variable_creator_stack = creator_stack # pylint: disable=protected-access
|
||||
yield
|
||||
else:
|
||||
with g.as_default():
|
||||
if creator_stack is not None:
|
||||
g._variable_creator_stack = creator_stack # pylint: disable=protected-access
|
||||
yield
|
||||
|
||||
|
||||
def _cpu_device(device):
|
||||
cpu_device = tf_device.DeviceSpec.from_string(device)
|
||||
cpu_device = cpu_device.replace(device_type="CPU", device_index=0)
|
||||
return cpu_device.to_string()
|
||||
|
||||
|
||||
class _RequestedStop(Exception): # pylint: disable=g-bad-exception-name
|
||||
pass
|
||||
|
||||
|
||||
# _call_for_each_replica is not a member of MirroredStrategy so that it is
|
||||
# not allowed to use anything specific to MirroredStrategy and thus
|
||||
# can be shared with other distribution strategies.
|
||||
|
||||
|
||||
# TODO(yuefengz): maybe create a common class for those who need to call this
|
||||
# _call_for_each_replica.
|
||||
def _call_for_each_replica(distribution, devices, fn, args, kwargs):
|
||||
"""Run `fn` in separate threads, once per replica/worker device.
|
||||
|
||||
Args:
|
||||
distribution: the DistributionStrategy object.
|
||||
devices: the devices to run `fn` on (logical device 0 for each replica).
|
||||
fn: function to run (will be run once per replica, each in its own thread).
|
||||
args: positional arguments for `fn`
|
||||
kwargs: keyword arguments for `fn`.
|
||||
|
||||
Returns:
|
||||
Merged return value of `fn` across all replicas.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If fn() calls get_replica_context().merge_call() a different
|
||||
number of times from the available devices.
|
||||
"""
|
||||
# TODO(josh11b): Add this option once we add synchronization to variable
|
||||
# creation. Until then, this is pretty unsafe to use.
|
||||
run_concurrently = False
|
||||
if not context.executing_eagerly():
|
||||
# Needed for per-thread device, etc. contexts in graph mode.
|
||||
ops.get_default_graph().switch_to_thread_local()
|
||||
|
||||
coord = coordinator.Coordinator(clean_stop_exception_types=(_RequestedStop,))
|
||||
|
||||
shared_variable_store = {}
|
||||
|
||||
# TODO(isaprykin): Create these threads once instead of during every call.
|
||||
threads = []
|
||||
for index in range(len(devices)):
|
||||
variable_creator_fn = shared_variable_creator.make_fn(
|
||||
shared_variable_store, index)
|
||||
t = _MirroredReplicaThread(
|
||||
distribution, coord, index, devices, variable_creator_fn, fn,
|
||||
values.select_replica(index, args),
|
||||
values.select_replica(index, kwargs))
|
||||
threads.append(t)
|
||||
|
||||
for t in threads:
|
||||
t.start()
|
||||
|
||||
# When `fn` starts `should_run` event is set on _MirroredReplicaThread
|
||||
# (`MRT`) threads. The execution waits until
|
||||
# `MRT.has_paused` is set, which indicates that either `fn` is
|
||||
# complete or a `get_replica_context().merge_call()` is called. If `fn` is
|
||||
# complete, then `MRT.done` is set to True. Otherwise, arguments
|
||||
# of `get_replica_context().merge_call` from all paused threads are grouped
|
||||
# and the `merge_fn` is performed. Results of the
|
||||
# `get_replica_context().merge_call` are then set to `MRT.merge_result`.
|
||||
# Each such `get_replica_context().merge_call` call returns the
|
||||
# `MRT.merge_result` for that thread when `MRT.should_run` event
|
||||
# is reset again. Execution of `fn` resumes.
|
||||
|
||||
try:
|
||||
with coord.stop_on_exception():
|
||||
all_done = False
|
||||
while not all_done and not coord.should_stop():
|
||||
done = []
|
||||
if run_concurrently:
|
||||
for t in threads:
|
||||
t.should_run.set()
|
||||
for t in threads:
|
||||
t.has_paused.wait()
|
||||
t.has_paused.clear()
|
||||
if coord.should_stop():
|
||||
return None
|
||||
done.append(t.done)
|
||||
else:
|
||||
for t in threads:
|
||||
t.should_run.set()
|
||||
t.has_paused.wait()
|
||||
t.has_paused.clear()
|
||||
if coord.should_stop():
|
||||
return None
|
||||
done.append(t.done)
|
||||
if coord.should_stop():
|
||||
return None
|
||||
all_done = all(done)
|
||||
if not all_done:
|
||||
if any(done):
|
||||
raise RuntimeError("Some replicas made a different number of "
|
||||
"replica_context().merge_call() calls.")
|
||||
# get_replica_context().merge_call() case
|
||||
merge_args = values.regroup(tuple(t.merge_args for t in threads))
|
||||
merge_kwargs = values.regroup(tuple(t.merge_kwargs for t in threads))
|
||||
# We capture the name_scope of the MRT when we call merge_fn
|
||||
# to ensure that if we have opened a name scope in the MRT,
|
||||
# it will be respected when executing the merge function. We only
|
||||
# capture the name_scope from the first MRT and assume it is
|
||||
# the same for all other MRTs.
|
||||
mtt_captured_name_scope = threads[0].captured_name_scope
|
||||
mtt_captured_var_scope = threads[0].captured_var_scope
|
||||
# Capture and merge the control dependencies from all the threads.
|
||||
mtt_captured_control_deps = set()
|
||||
for t in threads:
|
||||
mtt_captured_control_deps.update(t.captured_control_deps)
|
||||
with ops.name_scope(mtt_captured_name_scope),\
|
||||
ops.control_dependencies(mtt_captured_control_deps), \
|
||||
variable_scope.variable_scope(mtt_captured_var_scope):
|
||||
merge_result = threads[0].merge_fn(distribution, *merge_args,
|
||||
**merge_kwargs)
|
||||
for r, t in enumerate(threads):
|
||||
t.merge_result = values.select_replica(r, merge_result)
|
||||
finally:
|
||||
for t in threads:
|
||||
t.should_run.set()
|
||||
coord.join(threads)
|
||||
|
||||
return values.regroup(tuple(t.main_result for t in threads))
|
||||
|
||||
|
||||
def _is_device_list_single_worker(devices):
|
||||
"""Checks whether the devices list is for single or multi-worker.
|
||||
|
||||
|
@ -469,7 +311,6 @@ class MirroredExtended(distribute_lib.StrategyExtendedV1):
|
|||
"any local devices.")
|
||||
self._cross_device_ops = cross_device_ops
|
||||
self._initialize_strategy(devices)
|
||||
self._cfer_fn_cache = weakref.WeakKeyDictionary()
|
||||
|
||||
# TODO(b/128995245): Enable last partial batch support in graph mode.
|
||||
if ops.executing_eagerly_outside_functions():
|
||||
|
@ -739,35 +580,8 @@ class MirroredExtended(distribute_lib.StrategyExtendedV1):
|
|||
return self._get_cross_device_ops().broadcast(tensor, destinations)
|
||||
|
||||
def _call_for_each_replica(self, fn, args, kwargs):
|
||||
if isinstance(fn, def_function.Function):
|
||||
wrapped = self._cfer_fn_cache.get(fn)
|
||||
if wrapped is None:
|
||||
# We need to wrap fn such that it triggers _call_for_each_replica inside
|
||||
# the tf.function.
|
||||
wrapped = fn._clone( # pylint: disable=protected-access
|
||||
python_function=functools.partial(self._call_for_each_replica,
|
||||
fn.python_function))
|
||||
self._cfer_fn_cache[fn] = wrapped
|
||||
return wrapped(args, kwargs)
|
||||
|
||||
if context.executing_eagerly():
|
||||
logging.log_first_n(
|
||||
logging.WARN, "Using %s eagerly has significant "
|
||||
"overhead currently. We will be working on improving "
|
||||
"this in the future, but for now please wrap "
|
||||
"`call_for_each_replica` or `experimental_run` or "
|
||||
"`run` inside a tf.function to get the best performance." %
|
||||
self._container_strategy().__class__.__name__, 5)
|
||||
else:
|
||||
# When a tf.function is wrapped to trigger _call_for_each_replica (see
|
||||
# the other branch above), AutoGraph stops conversion at
|
||||
# _call_for_each_replica itself (TF library functions are whitelisted).
|
||||
# This makes sure that the Python function that originally passed to
|
||||
# the tf.function is still converted.
|
||||
fn = autograph.tf_convert(fn, autograph_ctx.control_status_ctx())
|
||||
|
||||
return _call_for_each_replica(self._container_strategy(), self._devices,
|
||||
fn, args, kwargs)
|
||||
return mirrored_run.call_for_each_replica(self._container_strategy(), fn,
|
||||
args, kwargs)
|
||||
|
||||
def _configure(self,
|
||||
session_config=None,
|
||||
|
@ -912,203 +726,3 @@ class MirroredExtended(distribute_lib.StrategyExtendedV1):
|
|||
def _in_multi_worker_mode(self):
|
||||
"""Whether this strategy indicates working in multi-worker settings."""
|
||||
return False
|
||||
|
||||
|
||||
class _MirroredReplicaThread(threading.Thread):
|
||||
"""A thread that runs() a function on a device."""
|
||||
|
||||
def __init__(self, dist, coord, replica_id, devices, variable_creator_fn,
|
||||
fn, args, kwargs):
|
||||
super(_MirroredReplicaThread, self).__init__()
|
||||
self.coord = coord
|
||||
self.distribution = dist
|
||||
self.devices = devices
|
||||
self.replica_id = replica_id
|
||||
self.variable_creator_fn = variable_creator_fn
|
||||
# State needed to run and return the results of `fn`.
|
||||
self.main_fn = fn
|
||||
self.main_args = args
|
||||
self.main_kwargs = kwargs
|
||||
self.main_result = None
|
||||
self.done = False
|
||||
# State needed to run the next merge_call() (if any) requested via
|
||||
# ReplicaContext.
|
||||
self.merge_fn = None
|
||||
self.merge_args = None
|
||||
self.merge_kwargs = None
|
||||
self.merge_result = None
|
||||
self.captured_name_scope = None
|
||||
self.captured_var_scope = None
|
||||
# We use a thread.Event for the main thread to signal when this
|
||||
# thread should start running (`should_run`), and another for
|
||||
# this thread to transfer control back to the main thread
|
||||
# (`has_paused`, either when it gets to a
|
||||
# `get_replica_context().merge_call` or when `fn` returns). In
|
||||
# either case the event starts cleared, is signaled by calling
|
||||
# set(). The receiving thread waits for the signal by calling
|
||||
# wait() and then immediately clearing the event using clear().
|
||||
self.should_run = threading.Event()
|
||||
self.has_paused = threading.Event()
|
||||
# These fields have to do with inheriting various contexts from the
|
||||
# parent thread:
|
||||
context.ensure_initialized()
|
||||
ctx = context.context()
|
||||
self.in_eager = ctx.executing_eagerly()
|
||||
self.record_thread_local_summary_state()
|
||||
self.record_thread_local_eager_context_state()
|
||||
self.context_device_policy = (
|
||||
pywrap_tfe.TFE_ContextGetDevicePlacementPolicy(
|
||||
ctx._context_handle)) # pylint: disable=protected-access
|
||||
self.graph = ops.get_default_graph()
|
||||
with ops.init_scope():
|
||||
self._init_in_eager = context.executing_eagerly()
|
||||
self._init_graph = ops.get_default_graph()
|
||||
self._variable_creator_stack = self.graph._variable_creator_stack[:] # pylint: disable=protected-access
|
||||
self._var_scope = variable_scope.get_variable_scope()
|
||||
# Adding a "/" at end lets us re-enter this scope later.
|
||||
self._name_scope = self.graph.get_name_scope()
|
||||
if self._name_scope:
|
||||
self._name_scope += "/"
|
||||
if self.replica_id > 0:
|
||||
if not self._name_scope:
|
||||
self._name_scope = ""
|
||||
self._name_scope += "replica_%d/" % self.replica_id
|
||||
|
||||
def run(self):
|
||||
self.should_run.wait()
|
||||
self.should_run.clear()
|
||||
try:
|
||||
if self.coord.should_stop():
|
||||
return
|
||||
self.restore_thread_local_summary_state()
|
||||
self.restore_thread_local_eager_context_state()
|
||||
# TODO(josh11b): Use current logical device instead of 0 here.
|
||||
with self.coord.stop_on_exception(), \
|
||||
_enter_graph(self._init_graph, self._init_in_eager), \
|
||||
_enter_graph(self.graph, self.in_eager,
|
||||
self._variable_creator_stack), \
|
||||
context.device_policy(self.context_device_policy), \
|
||||
MirroredReplicaContext(self.distribution, constant_op.constant(
|
||||
self.replica_id, dtypes.int32)), \
|
||||
ops.device(self.devices[self.replica_id]), \
|
||||
ops.name_scope(self._name_scope), \
|
||||
variable_scope.variable_scope(
|
||||
self._var_scope, reuse=self.replica_id > 0), \
|
||||
variable_scope.variable_creator_scope(self.variable_creator_fn):
|
||||
self.main_result = self.main_fn(*self.main_args, **self.main_kwargs)
|
||||
self.done = True
|
||||
finally:
|
||||
self.has_paused.set()
|
||||
|
||||
def record_thread_local_summary_state(self):
|
||||
"""Record the thread local summary state in self."""
|
||||
# TODO(slebedev): is this still relevant? the referenced bug is closed.
|
||||
summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access
|
||||
self._summary_step = summary_state.step
|
||||
self._summary_writer = summary_state.writer
|
||||
self._summary_recording = summary_state.is_recording
|
||||
self._summary_recording_distribution_strategy = (
|
||||
summary_state.is_recording_distribution_strategy)
|
||||
|
||||
def restore_thread_local_summary_state(self):
|
||||
"""Restore thread local summary state from self."""
|
||||
# TODO(slebedev): is this still relevant? the referenced bug is closed.
|
||||
summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access
|
||||
summary_state.step = self._summary_step
|
||||
summary_state.writer = self._summary_writer
|
||||
summary_state.is_recording = self._summary_recording
|
||||
summary_state.is_recording_distribution_strategy = (
|
||||
self._summary_recording_distribution_strategy)
|
||||
|
||||
def record_thread_local_eager_context_state(self):
|
||||
ctx = context.context()
|
||||
eager_context_state = ctx._thread_local_data # pylint: disable=protected-access
|
||||
self._eager_context_op_callbacks = eager_context_state.op_callbacks
|
||||
# TODO(b/125892694): record other fields in EagerContext.
|
||||
|
||||
def restore_thread_local_eager_context_state(self):
|
||||
ctx = context.context()
|
||||
eager_context_state = ctx._thread_local_data # pylint: disable=protected-access
|
||||
eager_context_state.op_callbacks = self._eager_context_op_callbacks
|
||||
# TODO(b/125892694): record other fields in EagerContext.
|
||||
|
||||
|
||||
class MirroredReplicaContext(distribute_lib.ReplicaContext):
|
||||
"""ReplicaContext used in MirroredStrategy.extended.call_for_each_replica().
|
||||
|
||||
Opened in `_MirroredReplicaThread`, to allow the user to invoke
|
||||
`MirroredStrategy`'s specific implementation of `merge_call()`,
|
||||
which works by delegating the function and its arguments to
|
||||
the main thread (the one that invoked
|
||||
`MirroredStrategy.extended.call_for_each_replica()`).
|
||||
"""
|
||||
|
||||
def _merge_call(self, fn, args, kwargs):
|
||||
"""Delegate to the main thread to actually perform merge_call()."""
|
||||
t = threading.current_thread() # a _MirroredReplicaThread
|
||||
t.merge_fn = fn
|
||||
t.merge_args = args
|
||||
t.merge_kwargs = kwargs
|
||||
t.captured_name_scope = t.graph.get_name_scope()
|
||||
# Adding a "/" at end lets us re-enter this scope later.
|
||||
if t.captured_name_scope:
|
||||
t.captured_name_scope += "/"
|
||||
|
||||
t.captured_var_scope = variable_scope.get_variable_scope()
|
||||
t.captured_control_deps = t.graph._current_control_dependencies() # pylint: disable=protected-access
|
||||
|
||||
# It is problematic if `merge_call` is called under a different graph other
|
||||
# than the one that `_call_for_each_replica` is called under, there are
|
||||
# 3 cases this can happen:
|
||||
#
|
||||
# 1. The `fn` passed to `_call_for_each_replica` is decorated with
|
||||
# `tf.function` and there is a `merge_call` in `fn`. Since
|
||||
# MirroredStrategy traces a separate function per thread (per device),
|
||||
# and each trace takes a shared lock, the lock is never released by the
|
||||
# first thread and subsequent replica threads cannot proceed to trace
|
||||
# their own functions. This issue is addressed by always converting
|
||||
# `_call_for_each_replica(tf.function(f))` to
|
||||
# ``tf.function(_call_for_each_replica(f))`.` in
|
||||
# `MirroredStrategy._call_for_each_replica`.
|
||||
#
|
||||
# 2. The `fn` passed to `_call_for_each_replica` contains a nested
|
||||
# `tf.function`, and there is a `merge_call` in the nested `tf.function`.
|
||||
# In this case each thread can successfully trace its own function, but
|
||||
# since the `merge_fn` passed to `merge_call` is executed in the main
|
||||
# thread (where `_call_for_each_replica` is executed), it can't access
|
||||
# the tensors that come from different graphs.
|
||||
#
|
||||
# 3. The `fn` passed to `_call_for_each_replica` contains a control-flow
|
||||
# statement, and there is a `merge_call` inside the control-flow body,
|
||||
# `fn` or `_call_for_each_replica` is decorated with `tf.function`.
|
||||
# Control flow statement creates a separate graph for its body, similar
|
||||
# to #2, `merge_fn` executed in the main thread can't access the
|
||||
# tensors that come from different graphs.
|
||||
#
|
||||
# We raise an error for #2 and #3.
|
||||
if ops.get_default_graph() != t.graph:
|
||||
raise RuntimeError(
|
||||
"`merge_call` called while defining a new graph or a tf.function."
|
||||
" This can often happen if the function `fn` passed to"
|
||||
" `strategy.run()` contains a nested `@tf.function`, and the nested "
|
||||
"`@tf.function` contains a synchronization point, such as aggregating"
|
||||
" gradients (e.g, optimizer.apply_gradients), or if the function `fn`"
|
||||
" uses a control flow statement which contains a synchronization"
|
||||
" point in the body. Such behaviors are not yet supported. Instead,"
|
||||
" please avoid nested `tf.function`s or control flow statements that"
|
||||
" may potentially cross a synchronization boundary, for example,"
|
||||
" wrap the `fn` passed to `strategy.run` or the entire `strategy.run`"
|
||||
" inside a `tf.function` or move the control flow out of `fn`")
|
||||
|
||||
t.has_paused.set()
|
||||
t.should_run.wait()
|
||||
t.should_run.clear()
|
||||
if t.coord.should_stop():
|
||||
raise _RequestedStop()
|
||||
return t.merge_result
|
||||
|
||||
@property
|
||||
def devices(self):
|
||||
distribute_lib.require_replica_context(self)
|
||||
replica_id = tensor_util.constant_value(self._replica_id_in_sync_group)
|
||||
return [self._strategy.extended.worker_devices_by_replica[replica_id]]
|
||||
|
|
|
@ -25,7 +25,7 @@ from tensorflow.python.distribute import cross_device_ops as cross_device_ops_li
|
|||
from tensorflow.python.distribute import device_util
|
||||
from tensorflow.python.distribute import distribute_lib
|
||||
from tensorflow.python.distribute import input_lib
|
||||
from tensorflow.python.distribute import mirrored_strategy
|
||||
from tensorflow.python.distribute import mirrored_run
|
||||
from tensorflow.python.distribute import multi_worker_util
|
||||
from tensorflow.python.distribute import numpy_dataset
|
||||
from tensorflow.python.distribute import values
|
||||
|
@ -456,9 +456,8 @@ class ParameterServerStrategyExtended(distribute_lib.StrategyExtendedV1):
|
|||
return var_creator(**kwargs)
|
||||
|
||||
def _call_for_each_replica(self, fn, args, kwargs):
|
||||
# pylint: disable=protected-access
|
||||
return mirrored_strategy._call_for_each_replica(
|
||||
self._container_strategy(), self._compute_devices, fn, args, kwargs)
|
||||
return mirrored_run.call_for_each_replica(self._container_strategy(), fn,
|
||||
args, kwargs)
|
||||
|
||||
def _verify_destinations_not_different_worker(self, destinations):
|
||||
if not self._cluster_spec:
|
||||
|
|
|
@ -1841,7 +1841,6 @@ class AggregatingVariableTest(test.TestCase, parameterized.TestCase):
|
|||
self.assertEqual(self.evaluate(aggregating._v.read_value()), 3.)
|
||||
|
||||
def testAssignAdd(self, distribution):
|
||||
self.skipTest("b/151250566")
|
||||
with distribution.scope():
|
||||
v = variable_scope.variable(
|
||||
1, aggregation=variables_lib.VariableAggregation.MEAN)
|
||||
|
|
Loading…
Reference in New Issue