tfdbg: add auto-generated Python API doc to gen_docs_combined.py
Also make some touch-ups on the relevant doc strings. Change: 143128831
This commit is contained in:
parent
b61c142e89
commit
b04d5686b9
tensorflow/python
@ -12,7 +12,53 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Public Python API of TensorFlow Debugger (tfdbg)."""
|
||||
"""Public Python API of TensorFlow Debugger (tfdbg).
|
||||
|
||||
## Functions for adding debug watches
|
||||
|
||||
These functions help you modify `RunOptions` to specify which `Tensor`s are to
|
||||
be watched when the TensorFlow graph is executed at runtime.
|
||||
|
||||
@@add_debug_tensor_watch
|
||||
@@watch_graph
|
||||
@@watch_graph_with_blacklists
|
||||
|
||||
|
||||
## Classes for debug-dump data and directories
|
||||
|
||||
These classes allow you to load and inspect tensor values dumped from
|
||||
TensorFlow graphs during runtime.
|
||||
|
||||
@@DebugTensorDatum
|
||||
@@DebugDumpDir
|
||||
|
||||
|
||||
## Functions for loading debug-dump data
|
||||
|
||||
@@load_tensor_from_event_file
|
||||
|
||||
|
||||
## Tensor-value predicates
|
||||
|
||||
Built-in tensor-filter predicates to support conditional breakpoint between
|
||||
runs. See `DebugDumpDir.find()` for more details.
|
||||
|
||||
@@has_inf_or_nan
|
||||
|
||||
|
||||
## Session wrapper class and `SessionRunHook` implementations
|
||||
|
||||
These classes allow you to
|
||||
|
||||
* wrap aroundTensorFlow `Session` objects to debug plain TensorFlow models
|
||||
(see `LocalCLIDebugWrapperSession`), or
|
||||
* generate `SessionRunHook` objects to debug `tf.contrib.learn` models (see
|
||||
`LocalCLIDebugHook`).
|
||||
|
||||
@@LocalCLIDebugHook
|
||||
@@LocalCLIDebugWrapperSession
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -12,7 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Data structures and helpers for TensorFlow Debugger (tfdbg)."""
|
||||
"""Classes and functions to handle debug-dump data of TensorFlow Debugger."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -32,15 +33,15 @@ from tensorflow.python.platform import gfile
|
||||
def load_tensor_from_event_file(event_file_path):
|
||||
"""Load a tensor from an event file.
|
||||
|
||||
Assumes that the event file contains a Event protobuf and the Event protobuf
|
||||
contains a tensor.
|
||||
Assumes that the event file contains a `Event` protobuf and the `Event`
|
||||
protobuf contains a `Tensor` value.
|
||||
|
||||
Args:
|
||||
event_file_path: Path to the event file.
|
||||
event_file_path: (`str`) path to the event file.
|
||||
|
||||
Returns:
|
||||
The tensor value loaded from the event file. For uninitialized tensors,
|
||||
return None.
|
||||
The tensor value loaded from the event file, as a `numpy.ndarray`. For
|
||||
uninitialized tensors, returns None.
|
||||
"""
|
||||
|
||||
event = event_pb2.Event()
|
||||
@ -105,10 +106,10 @@ def get_output_slot(element_name):
|
||||
assumed.
|
||||
|
||||
Args:
|
||||
element_name: (str) name of the graph element in question.
|
||||
element_name: (`str`) name of the graph element in question.
|
||||
|
||||
Returns:
|
||||
(int) output slot number.
|
||||
(`int`) output slot number.
|
||||
"""
|
||||
return int(element_name.split(":")[-1]) if ":" in element_name else 0
|
||||
|
||||
@ -220,17 +221,17 @@ def has_inf_or_nan(datum, tensor):
|
||||
"""A predicate for whether a tensor consists of any bad numerical values.
|
||||
|
||||
This predicate is common enough to merit definition in this module.
|
||||
Bad numerical values include nans and infs.
|
||||
The signature of this function follows the requiremnet of DebugDumpDir's
|
||||
find() method.
|
||||
Bad numerical values include `nan`s and `inf`s.
|
||||
The signature of this function follows the requirement of the method
|
||||
`DebugDumpDir.find()`.
|
||||
|
||||
Args:
|
||||
datum: (DebugTensorDatum) Datum metadata.
|
||||
tensor: (numpy.ndarray or None) Value of the tensor. None represents
|
||||
datum: (`DebugTensorDatum`) Datum metadata.
|
||||
tensor: (`numpy.ndarray` or None) Value of the tensor. None represents
|
||||
an uninitialized tensor.
|
||||
|
||||
Returns:
|
||||
(bool) True if and only if tensor consists of any nan or inf values.
|
||||
(`bool`) True if and only if tensor consists of any nan or inf values.
|
||||
"""
|
||||
|
||||
_ = datum # Datum metadata is unused in this predicate.
|
||||
@ -247,32 +248,33 @@ def has_inf_or_nan(datum, tensor):
|
||||
|
||||
|
||||
class DebugTensorDatum(object):
|
||||
"""A single tensor dumped by tfdbg.
|
||||
"""A single tensor dumped by TensorFlow Debugger (tfdbg).
|
||||
|
||||
Contains "metadata" for the dumped tensor, including node name, output slot,
|
||||
debug op and timestamp.
|
||||
Contains metadata about the dumped tensor, including `timestamp`,
|
||||
`node_name`, `output_slot`, `debug_op`, and path to the dump file
|
||||
(`file_path`).
|
||||
|
||||
This type does not contain the space-expensive tensor (numpy array) itself.
|
||||
It just points to the file path from which the tensor can be loaded if
|
||||
needed.
|
||||
This type does not hold the generally space-expensive tensor value (numpy
|
||||
array). Instead, it points to the file from which the tensor value can be
|
||||
loaded (with the `get_tensor` method) if needed.
|
||||
"""
|
||||
|
||||
def __init__(self, dump_root, debug_dump_rel_path):
|
||||
"""DebugTensorDatum constructor.
|
||||
"""`DebugTensorDatum` constructor.
|
||||
|
||||
Args:
|
||||
dump_root: Debug dump root directory.
|
||||
debug_dump_rel_path: Path to a debug dump file, relative to the debug
|
||||
dump root directory. For example, suppose the debug dump root
|
||||
directory is "/tmp/tfdbg_1" and the dump file is at
|
||||
"/tmp/tfdbg_1/ns_1/node_a_0_DebugIdentity_123456789", then
|
||||
dump_root: (`str`) Debug dump root directory.
|
||||
debug_dump_rel_path: (`str`) Path to a debug dump file, relative to the
|
||||
`dump_root`. For example, suppose the debug dump root
|
||||
directory is `/tmp/tfdbg_1` and the dump file is at
|
||||
`/tmp/tfdbg_1/ns_1/node_a_0_DebugIdentity_123456789`, then
|
||||
the value of the debug_dump_rel_path should be
|
||||
"ns_1/node_a_0_DebugIdenity_1234456789".
|
||||
`ns_1/node_a_0_DebugIdenity_1234456789`.
|
||||
|
||||
Raises:
|
||||
ValueError: If the base file name of the dump file does not conform to
|
||||
the dump file naming pattern:
|
||||
<op_name>_<output_slot>_<debug_op_name>_<timestamp_microsec>
|
||||
`node_name`_`output_slot`_`debug_op`_`timestamp`
|
||||
"""
|
||||
|
||||
base = os.path.basename(debug_dump_rel_path)
|
||||
@ -307,31 +309,62 @@ class DebugTensorDatum(object):
|
||||
return self.__str__()
|
||||
|
||||
def get_tensor(self):
|
||||
"""Get tensor from the dump (Event) file.
|
||||
"""Get tensor from the dump (`Event`) file.
|
||||
|
||||
Returns:
|
||||
The tensor loaded from the dump (Event) file.
|
||||
The tensor loaded from the dump (`Event`) file.
|
||||
"""
|
||||
|
||||
return load_tensor_from_event_file(self.file_path)
|
||||
|
||||
@property
|
||||
def timestamp(self):
|
||||
"""Timestamp of when this tensor value was dumped.
|
||||
|
||||
Returns:
|
||||
(`int`) The timestamp in microseconds.
|
||||
"""
|
||||
|
||||
return self._timestamp
|
||||
|
||||
@property
|
||||
def debug_op(self):
|
||||
"""Name of the debug op.
|
||||
|
||||
Returns:
|
||||
(`str`) debug op name (e.g., `DebugIdentity`).
|
||||
"""
|
||||
|
||||
return self._debug_op
|
||||
|
||||
@property
|
||||
def node_name(self):
|
||||
"""Name of the node from which the tensor value was dumped.
|
||||
|
||||
Returns:
|
||||
(`str`) name of the node watched by the debug op.
|
||||
"""
|
||||
|
||||
return self._node_name
|
||||
|
||||
@property
|
||||
def output_slot(self):
|
||||
"""Output slot index from which the tensor value was dumped.
|
||||
|
||||
Returns:
|
||||
(`int`) output slot index watched by the debug op.
|
||||
"""
|
||||
|
||||
return self._output_slot
|
||||
|
||||
@property
|
||||
def tensor_name(self):
|
||||
"""Name of the tensor watched by the debug op.
|
||||
|
||||
Returns:
|
||||
(`str`) `Tensor` name, in the form of `node_name`:`output_slot`
|
||||
"""
|
||||
|
||||
return _get_tensor_name(self.node_name, self.output_slot)
|
||||
|
||||
@property
|
||||
@ -339,32 +372,34 @@ class DebugTensorDatum(object):
|
||||
"""Watch key identities a debug watch on a tensor.
|
||||
|
||||
Returns:
|
||||
A watch key, in the form of <tensor_name>:<debug_op>.
|
||||
(`str`) A watch key, in the form of `tensor_name`:`debug_op`.
|
||||
"""
|
||||
|
||||
return _get_tensor_watch_key(self.node_name, self.output_slot,
|
||||
self.debug_op)
|
||||
|
||||
@property
|
||||
def file_path(self):
|
||||
"""Path to the file which stores the value of the dumped tensor."""
|
||||
|
||||
return self._file_path
|
||||
|
||||
|
||||
class DebugDumpDir(object):
|
||||
"""Data set from a debug dump directory on filesystem.
|
||||
"""Data set from a debug-dump directory on filesystem.
|
||||
|
||||
An instance of DebugDumpDir contains all DebugTensorDatum in a tfdbg dump
|
||||
root directory. This is an immutable object, of which all constitute tensor
|
||||
dump files and partition_graphs are loaded during the __init__ call.
|
||||
An instance of `DebugDumpDir` contains all `DebugTensorDatum` instances
|
||||
in a tfdbg dump root directory.
|
||||
"""
|
||||
|
||||
def __init__(self, dump_root, partition_graphs=None, validate=True):
|
||||
"""DebugDumpDir constructor.
|
||||
"""`DebugDumpDir` constructor.
|
||||
|
||||
Args:
|
||||
dump_root: Path to the dump root directory.
|
||||
dump_root: (`str`) path to the dump root directory.
|
||||
partition_graphs: A repeated field of GraphDefs representing the
|
||||
partition graphs executed by the TensorFlow runtime.
|
||||
validate: Whether the dump files are to be validated against the
|
||||
validate: (`bool`) whether the dump files are to be validated against the
|
||||
partition graphs.
|
||||
|
||||
Raises:
|
||||
@ -381,10 +416,10 @@ class DebugDumpDir(object):
|
||||
self._python_graph = None
|
||||
|
||||
def _load_dumps(self, dump_root):
|
||||
"""Load DebugTensorDatum instances from the dump root.
|
||||
"""Load `DebugTensorDatum` instances from the dump root.
|
||||
|
||||
Populates a list of DebugTensorDatum and sort the list by ascending
|
||||
timestamp.
|
||||
Populates a list of `DebugTensorDatum` instance and sorts the list by
|
||||
ascending timestamp.
|
||||
|
||||
This sorting order reflects the order in which the TensorFlow executor
|
||||
processed the nodes of the graph. It is (one of many possible) topological
|
||||
@ -404,7 +439,7 @@ class DebugDumpDir(object):
|
||||
graphs may not be available, e.g., when the run errors out.
|
||||
|
||||
Args:
|
||||
dump_root: (str) Dump root directory.
|
||||
dump_root: (`str`) Dump root directory.
|
||||
"""
|
||||
|
||||
self._dump_root = dump_root
|
||||
@ -439,11 +474,11 @@ class DebugDumpDir(object):
|
||||
"""Obtain a DebugTensorDatum from the directory and file name.
|
||||
|
||||
Args:
|
||||
dir_name: (str) Name of the directory in which the dump file resides.
|
||||
file_name: (str) Base name of the dump file.
|
||||
dir_name: (`str`) Name of the directory in which the dump file resides.
|
||||
file_name: (`str`) Base name of the dump file.
|
||||
|
||||
Returns:
|
||||
(DebugTensorDatum) The DebugTensorDatum loaded from the dump file.
|
||||
(`DebugTensorDatum`) The `DebugTensorDatum` loaded from the dump file.
|
||||
"""
|
||||
|
||||
# Calculate the relative path of the dump file with respect to the root.
|
||||
@ -455,7 +490,7 @@ class DebugDumpDir(object):
|
||||
def _create_tensor_watch_maps(self):
|
||||
"""Create maps from tensor watch keys to datum and to timestamps.
|
||||
|
||||
Create a map from watch key (tensor name + debug op) to DebugTensorDatum
|
||||
Create a map from watch key (tensor name + debug op) to `DebugTensorDatum`
|
||||
item. Also make a map from watch key to relative timestamp.
|
||||
"relative" means (absolute timestamp - t0).
|
||||
"""
|
||||
@ -478,7 +513,7 @@ class DebugDumpDir(object):
|
||||
|
||||
Unlike the partition graphs, which are protobuf `GraphDef` objects, `Graph`
|
||||
is a Python object and carries additional information such as the traceback
|
||||
of nodes in the graph.
|
||||
of the construction of the nodes in the graph.
|
||||
|
||||
Args:
|
||||
python_graph: (ops.Graph) The Python Graph object.
|
||||
@ -499,8 +534,9 @@ class DebugDumpDir(object):
|
||||
"""Absolute timestamp of the first dumped tensor.
|
||||
|
||||
Returns:
|
||||
Absolute timestamp of the first dumped tensor.
|
||||
(`int`) absolute timestamp of the first dumped tensor, in microseconds.
|
||||
"""
|
||||
|
||||
return self._t0
|
||||
|
||||
@property
|
||||
@ -508,8 +544,9 @@ class DebugDumpDir(object):
|
||||
"""Total number of dumped tensors in the dump root directory.
|
||||
|
||||
Returns:
|
||||
Total number of dumped tensors in the dump root directory.
|
||||
(`int`) total number of dumped tensors in the dump root directory.
|
||||
"""
|
||||
|
||||
return len(self._dump_tensor_data)
|
||||
|
||||
def _load_partition_graphs(self, partition_graphs, validate):
|
||||
@ -524,7 +561,7 @@ class DebugDumpDir(object):
|
||||
partition_graphs: Partition graphs executed by the TensorFlow runtime,
|
||||
represented as repeated fields of GraphDef.
|
||||
If no partition_graph is available, use None.
|
||||
validate: (bool) Whether the dump files are to be validated against the
|
||||
validate: (`bool`) Whether the dump files are to be validated against the
|
||||
partition graphs.
|
||||
"""
|
||||
|
||||
@ -619,7 +656,7 @@ class DebugDumpDir(object):
|
||||
"""Prune nodes out of input and recipient maps.
|
||||
|
||||
Args:
|
||||
nodes_to_prune: (list of str) Names of the nodes to be pruned.
|
||||
nodes_to_prune: (`list` of `str`) Names of the nodes to be pruned.
|
||||
"""
|
||||
|
||||
for node in nodes_to_prune:
|
||||
@ -759,6 +796,7 @@ class DebugDumpDir(object):
|
||||
Raises:
|
||||
LookupError: If no partition graphs have been loaded.
|
||||
"""
|
||||
|
||||
if self._partition_graphs is None:
|
||||
raise LookupError("No partition graphs have been loaded.")
|
||||
|
||||
@ -773,13 +811,14 @@ class DebugDumpDir(object):
|
||||
Raises:
|
||||
LookupError: If no partition graphs have been loaded.
|
||||
"""
|
||||
|
||||
if self._partition_graphs is None:
|
||||
raise LookupError("No partition graphs have been loaded.")
|
||||
|
||||
return [node_name for node_name in self._node_inputs]
|
||||
|
||||
def node_attributes(self, node_name):
|
||||
"""Get attributes of a node.
|
||||
"""Get the attributes of a node.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node in question.
|
||||
@ -791,6 +830,7 @@ class DebugDumpDir(object):
|
||||
LookupError: If no partition graphs have been loaded.
|
||||
ValueError: If no node named node_name exists.
|
||||
"""
|
||||
|
||||
if self._partition_graphs is None:
|
||||
raise LookupError("No partition graphs have been loaded.")
|
||||
|
||||
@ -804,11 +844,11 @@ class DebugDumpDir(object):
|
||||
|
||||
Args:
|
||||
node_name: Name of the node.
|
||||
is_control: Whether control inputs, rather than non-control inputs, are
|
||||
to be returned.
|
||||
is_control: (`bool`) Whether control inputs, rather than non-control
|
||||
inputs, are to be returned.
|
||||
|
||||
Returns:
|
||||
All non-control inputs to the node, as a list of node names.
|
||||
(`list` of `str`) inputs to the node, as a list of node names.
|
||||
|
||||
Raises:
|
||||
LookupError: If node inputs and control inputs have not been loaded
|
||||
@ -837,7 +877,8 @@ class DebugDumpDir(object):
|
||||
include_control: Include control inputs (True by default).
|
||||
|
||||
Returns:
|
||||
All transitive inputs to the node, as a list of node names.
|
||||
(`list` of `str`) all transitive inputs to the node, as a list of node
|
||||
names.
|
||||
|
||||
Raises:
|
||||
LookupError: If node inputs and control inputs have not been loaded
|
||||
@ -900,12 +941,12 @@ class DebugDumpDir(object):
|
||||
"""Get recipient of the given node's output according to partition graphs.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node.
|
||||
is_control: Whether control outputs, rather than non-control outputs,
|
||||
are to be returned.
|
||||
node_name: (`str`) name of the node.
|
||||
is_control: (`bool`) whether control outputs, rather than non-control
|
||||
outputs, are to be returned.
|
||||
|
||||
Returns:
|
||||
All non-control inputs to the node, as a list of node names.
|
||||
(`list` of `str`) all inputs to the node, as a list of node names.
|
||||
|
||||
Raises:
|
||||
LookupError: If node inputs and control inputs have not been loaded
|
||||
@ -930,7 +971,7 @@ class DebugDumpDir(object):
|
||||
"""Get the list of devices.
|
||||
|
||||
Returns:
|
||||
Number of devices.
|
||||
(`list` of `str`) names of the devices.
|
||||
|
||||
Raises:
|
||||
LookupError: If node inputs and control inputs have not been loaded
|
||||
@ -946,7 +987,7 @@ class DebugDumpDir(object):
|
||||
"""Test if a node exists in the partition graphs.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node to be checked, as a str.
|
||||
node_name: (`str`) name of the node to be checked.
|
||||
|
||||
Returns:
|
||||
A boolean indicating whether the node exists.
|
||||
@ -965,16 +1006,17 @@ class DebugDumpDir(object):
|
||||
"""Get the device of a node.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node.
|
||||
node_name: (`str`) name of the node.
|
||||
|
||||
Returns:
|
||||
Name of the device on which the node is placed, as a str.
|
||||
(`str`) name of the device on which the node is placed.
|
||||
|
||||
Raises:
|
||||
LookupError: If node inputs and control inputs have not been loaded
|
||||
from partition graphs yet.
|
||||
ValueError: If the node does not exist in partition graphs.
|
||||
"""
|
||||
|
||||
if self._partition_graphs is None:
|
||||
raise LookupError(
|
||||
"Node devices are not loaded from partition graphs yet.")
|
||||
@ -989,16 +1031,17 @@ class DebugDumpDir(object):
|
||||
"""Get the op type of given node.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node.
|
||||
node_name: (`str`) name of the node.
|
||||
|
||||
Returns:
|
||||
Type of the node's op, as a str.
|
||||
(`str`) op type of the node.
|
||||
|
||||
Raises:
|
||||
LookupError: If node op types have not been loaded
|
||||
from partition graphs yet.
|
||||
ValueError: If the node does not exist in partition graphs.
|
||||
"""
|
||||
|
||||
if self._partition_graphs is None:
|
||||
raise LookupError(
|
||||
"Node op types are not loaded from partition graphs yet.")
|
||||
@ -1013,14 +1056,14 @@ class DebugDumpDir(object):
|
||||
"""Get all tensor watch keys of given node according to partition graphs.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node.
|
||||
node_name: (`str`) name of the node.
|
||||
|
||||
Returns:
|
||||
All debug tensor watch keys, as a list of strings. Returns an empty list
|
||||
if the node name does not correspond to any debug watch keys.
|
||||
(`list` of `str`) all debug tensor watch keys. Returns an empty list if
|
||||
the node name does not correspond to any debug watch keys.
|
||||
|
||||
Raises:
|
||||
LookupError: If debug watch information has not been loaded from
|
||||
`LookupError`: If debug watch information has not been loaded from
|
||||
partition graphs yet.
|
||||
"""
|
||||
|
||||
@ -1037,13 +1080,13 @@ class DebugDumpDir(object):
|
||||
return watch_keys
|
||||
|
||||
def watch_key_to_data(self, debug_watch_key):
|
||||
"""Get all DebugTensorDatum instances corresponding to a debug watch key.
|
||||
"""Get all `DebugTensorDatum` instances corresponding to a debug watch key.
|
||||
|
||||
Args:
|
||||
debug_watch_key: A debug watch key, as a str.
|
||||
debug_watch_key: (`str`) debug watch key.
|
||||
|
||||
Returns:
|
||||
A list of DebugTensorDatuminstances that correspond to the debug watch
|
||||
A list of `DebugTensorDatum` instances that correspond to the debug watch
|
||||
key. If the watch key does not exist, returns an empty list.
|
||||
|
||||
Raises:
|
||||
@ -1057,18 +1100,24 @@ class DebugDumpDir(object):
|
||||
|
||||
Args:
|
||||
predicate: A callable that takes two input arguments:
|
||||
predicate(debug_tensor_datum, tensor),
|
||||
where "debug_tensor_datum" is an instance of DebugTensorDatum, which
|
||||
carries "metadata", such as the name of the node, the tensor's slot
|
||||
index on the node, timestamp, debug op name, etc; and "tensor" is
|
||||
the dumped tensor value as a numpy array.
|
||||
first_n: Return only the first n dumped tensor data (in time order) for
|
||||
which the predicate is True. To return all such data, let first_n be
|
||||
<= 0.
|
||||
|
||||
```python
|
||||
def predicate(debug_tensor_datum, tensor):
|
||||
# returns a bool
|
||||
```
|
||||
|
||||
where `debug_tensor_datum` is an instance of `DebugTensorDatum`, which
|
||||
carries the metadata, such as the `Tensor`'s node name, output slot
|
||||
timestamp, debug op name, etc.; and `tensor` is the dumped tensor value
|
||||
as a `numpy.ndarray`.
|
||||
first_n: (`int`) return only the first n `DebugTensotDatum` instances (in
|
||||
time order) for which the predicate returns True. To return all the
|
||||
`DebugTensotDatum` instances, let first_n be <= 0.
|
||||
|
||||
Returns:
|
||||
A list of all DebugTensorDatum objects in this DebugDumpDir object for
|
||||
which predicate returns True, sorted in ascending order of the timestamp.
|
||||
A list of all `DebugTensorDatum` objects in this `DebugDumpDir` object
|
||||
for which predicate returns True, sorted in ascending order of the
|
||||
timestamp.
|
||||
"""
|
||||
|
||||
matched_data = []
|
||||
@ -1085,16 +1134,16 @@ class DebugDumpDir(object):
|
||||
"""Get the file paths from a debug-dumped tensor.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node that the tensor is produced by.
|
||||
output_slot: Output slot index of tensor.
|
||||
debug_op: Name of the debug op.
|
||||
node_name: (`str`) name of the node that the tensor is produced by.
|
||||
output_slot: (`int`) output slot index of tensor.
|
||||
debug_op: (`str`) name of the debug op.
|
||||
|
||||
Returns:
|
||||
List of file path(s) loaded. This is a list because each debugged tensor
|
||||
may be dumped multiple times.
|
||||
|
||||
Raises:
|
||||
ValueError: If the tensor does not exist in the debub dump data.
|
||||
ValueError: If the tensor does not exist in the debug-dump data.
|
||||
"""
|
||||
|
||||
watch_key = _get_tensor_watch_key(node_name, output_slot, debug_op)
|
||||
@ -1108,18 +1157,18 @@ class DebugDumpDir(object):
|
||||
"""Get the tensor value from for a debug-dumped tensor.
|
||||
|
||||
The tensor may be dumped multiple times in the dump root directory, so a
|
||||
list of tensors (numpy arrays) is returned.
|
||||
list of tensors (`numpy.ndarray`) is returned.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node that the tensor is produced by.
|
||||
output_slot: Output slot index of tensor.
|
||||
debug_op: Name of the debug op.
|
||||
node_name: (`str`) name of the node that the tensor is produced by.
|
||||
output_slot: (`int`) output slot index of tensor.
|
||||
debug_op: (`str`) name of the debug op.
|
||||
|
||||
Returns:
|
||||
List of tensor(s) loaded from the tensor dump file(s).
|
||||
List of tensors (`numpy.ndarray`) loaded from the debug-dump file(s).
|
||||
|
||||
Raises:
|
||||
ValueError: If the tensor does not exist in the debub dump data.
|
||||
ValueError: If the tensor does not exist in the debug-dump data.
|
||||
"""
|
||||
|
||||
watch_key = _get_tensor_watch_key(node_name, output_slot, debug_op)
|
||||
@ -1132,18 +1181,18 @@ class DebugDumpDir(object):
|
||||
def get_rel_timestamps(self, node_name, output_slot, debug_op):
|
||||
"""Get the relative timestamp from for a debug-dumped tensor.
|
||||
|
||||
Relative timestamp means (absolute timestamp - t0), t0 being the absolute
|
||||
timestamp of the first dumped tensor in the dump root. The tensor may be
|
||||
dumped multiple times in the dump root directory, so a list of relative
|
||||
timestamp (numpy arrays) is returned.
|
||||
Relative timestamp means (absolute timestamp - `t0`), where `t0` is the
|
||||
absolute timestamp of the first dumped tensor in the dump root. The tensor
|
||||
may be dumped multiple times in the dump root directory, so a list of
|
||||
relative timestamps (`numpy.ndarray`) is returned.
|
||||
|
||||
Args:
|
||||
node_name: Name of the node that the tensor is produced by.
|
||||
output_slot: Output slot index of tensor.
|
||||
debug_op: Name of the debug op.
|
||||
node_name: (`str`) name of the node that the tensor is produced by.
|
||||
output_slot: (`int`) output slot index of tensor.
|
||||
debug_op: (`str`) name of the debug op.
|
||||
|
||||
Returns:
|
||||
List of relative timestamps.
|
||||
(list of int) list of relative timestamps.
|
||||
|
||||
Raises:
|
||||
ValueError: If the tensor does not exist in the debub dump data.
|
||||
@ -1160,7 +1209,7 @@ class DebugDumpDir(object):
|
||||
"""Try to retrieve the Python traceback of node's construction.
|
||||
|
||||
Args:
|
||||
element_name: (str) Name of a graph element (node or tensor).
|
||||
element_name: (`str`) Name of a graph element (node or tensor).
|
||||
|
||||
Returns:
|
||||
(list) The traceback list object as returned by the `extract_trace`
|
||||
|
@ -13,6 +13,7 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""TensorFlow Debugger (tfdbg) Utilities."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -27,18 +28,20 @@ def add_debug_tensor_watch(run_options,
|
||||
output_slot=0,
|
||||
debug_ops="DebugIdentity",
|
||||
debug_urls=None):
|
||||
"""Add debug tensor watch option to RunOptions.
|
||||
"""Add watch on a `Tensor` to `RunOptions`.
|
||||
|
||||
N.B.: Under certain circumstances, the `Tensor` may not be actually watched
|
||||
(e.g., if the node of the `Tensor` is constant-folded during runtime).
|
||||
|
||||
Args:
|
||||
run_options: An instance of tensorflow.core.protobuf.config_pb2.RunOptions
|
||||
node_name: Name of the node to watch.
|
||||
output_slot: Output slot index of the tensor from the watched node.
|
||||
debug_ops: Name(s) of the debug op(s). Default: "DebugIdentity".
|
||||
Can be a list of strings or a single string. The latter case is
|
||||
equivalent to a list of string with only one element.
|
||||
debug_urls: URLs to send debug signals to: a non-empty list of strings or
|
||||
a string, or None. The case of a string is equivalent to a list of
|
||||
string with only one element.
|
||||
run_options: An instance of `config_pb2.RunOptions` to be modified.
|
||||
node_name: (`str`) name of the node to watch.
|
||||
output_slot: (`int`) output slot index of the tensor from the watched node.
|
||||
debug_ops: (`str` or `list` of `str`) name(s) of the debug op(s). Can be a
|
||||
`list` of `str` or a single `str`. The latter case is equivalent to a
|
||||
`list` of `str` with only one element.
|
||||
debug_urls: (`str` or `list` of `str`) URL(s) to send debug values to,
|
||||
e.g., `file:///tmp/tfdbg_dump_1`, `grpc://localhost:12345`.
|
||||
"""
|
||||
|
||||
watch_opts = run_options.debug_options.debug_tensor_watch_opts
|
||||
@ -65,27 +68,31 @@ def watch_graph(run_options,
|
||||
debug_urls=None,
|
||||
node_name_regex_whitelist=None,
|
||||
op_type_regex_whitelist=None):
|
||||
"""Add debug tensor watch options to RunOptions based on a TensorFlow graph.
|
||||
"""Add debug watches to `RunOptions` for a TensorFlow graph.
|
||||
|
||||
To watch all tensors on the graph, set both node_name_regex_whitelist
|
||||
and op_type_regex_whitelist to None.
|
||||
To watch all `Tensor`s on the graph, let both `node_name_regex_whitelist`
|
||||
and `op_type_regex_whitelist` be the default (`None`).
|
||||
|
||||
N.B.: Under certain circumstances, not all specified `Tensor`s will be
|
||||
actually watched (e.g., nodes that are constant-folded during runtime will
|
||||
not be watched).
|
||||
|
||||
Args:
|
||||
run_options: An instance of tensorflow.core.protobuf.config_pb2.RunOptions
|
||||
graph: An instance of tensorflow.python.framework.ops.Graph
|
||||
debug_ops: Name of the debug op to use. Default: "DebugIdentity".
|
||||
Can be a list of strings of a single string. The latter case is
|
||||
equivalent to a list of a single string.
|
||||
debug_urls: Debug urls. Can be a list of strings, a single string, or
|
||||
None. The case of a single string is equivalen to a list consisting
|
||||
of a single string.
|
||||
node_name_regex_whitelist: Regular-expression whitelist for node_name.
|
||||
This should be a string, e.g., "(weight_[0-9]+|bias_.*)"
|
||||
run_options: An instance of `config_pb2.RunOptions` to be modified.
|
||||
graph: An instance of `ops.Graph`.
|
||||
debug_ops: (`str` or `list` of `str`) name(s) of the debug op(s) to use.
|
||||
debug_urls: URLs to send debug values to. Can be a list of strings,
|
||||
a single string, or None. The case of a single string is equivalent to
|
||||
a list consisting of a single string, e.g., `file:///tmp/tfdbg_dump_1`,
|
||||
`grpc://localhost:12345`.
|
||||
node_name_regex_whitelist: Regular-expression whitelist for node_name,
|
||||
e.g., `"(weight_[0-9]+|bias_.*)"`
|
||||
op_type_regex_whitelist: Regular-expression whitelist for the op type of
|
||||
nodes. If both node_name_regex_whitelist and op_type_regex_whitelist
|
||||
are none, the two filtering operations will occur in an "AND"
|
||||
relation. In other words, a node will be included if and only if it
|
||||
hits both whitelists. This should be a string, e.g., "(Variable|Add)".
|
||||
nodes, e.g., `"(Variable|Add)"`.
|
||||
If both `node_name_regex_whitelist` and `op_type_regex_whitelist`
|
||||
are set, the two filtering operations will occur in a logical `AND`
|
||||
relation. In other words, a node will be included if and only if it
|
||||
hits both whitelists.
|
||||
"""
|
||||
|
||||
if isinstance(debug_ops, str):
|
||||
@ -130,29 +137,30 @@ def watch_graph_with_blacklists(run_options,
|
||||
debug_urls=None,
|
||||
node_name_regex_blacklist=None,
|
||||
op_type_regex_blacklist=None):
|
||||
"""Add debug tensor watch options, blacklisting nodes and op types.
|
||||
"""Add debug tensor watches, blacklisting nodes and op types.
|
||||
|
||||
This is similar to watch_graph(), but the node names and op types can be
|
||||
This is similar to `watch_graph()`, but the node names and op types are
|
||||
blacklisted, instead of whitelisted.
|
||||
|
||||
N.B.: Under certain circumstances, not all specified `Tensor`s will be
|
||||
actually watched (e.g., nodes that are constant-folded during runtime will
|
||||
not be watched).
|
||||
|
||||
Args:
|
||||
run_options: An instance of tensorflow.core.protobuf.config_pb2.RunOptions
|
||||
graph: An instance of tensorflow.python.framework.ops.Graph
|
||||
debug_ops: Name of the debug op to use. Default: "DebugIdentity".
|
||||
Can be a list of strings of a single string. The latter case is
|
||||
equivalent to a list of a single string.
|
||||
debug_urls: Debug urls. Can be a list of strings, a single string, or
|
||||
None. The case of a single string is equivalen to a list consisting
|
||||
of a single string.
|
||||
run_options: An instance of `config_pb2.RunOptions` to be modified.
|
||||
graph: An instance of `ops.Graph`.
|
||||
debug_ops: (`str` or `list` of `str`) name(s) of the debug op(s) to use.
|
||||
debug_urls: URL(s) to send ebug values to, e.g.,
|
||||
`file:///tmp/tfdbg_dump_1`, `grpc://localhost:12345`.
|
||||
node_name_regex_blacklist: Regular-expression blacklist for node_name.
|
||||
This should be a string, e.g., "(weight_[0-9]+|bias_.*)"
|
||||
This should be a string, e.g., `"(weight_[0-9]+|bias_.*)"`.
|
||||
op_type_regex_blacklist: Regular-expression blacklist for the op type of
|
||||
nodes. If both node_name_regex_blacklist and op_type_regex_blacklist
|
||||
are none, the two filtering operations will occur in an "OR"
|
||||
relation. In other words, a node will be excluded if it hits either of
|
||||
the two blacklists; a node will be included if and only if it hits
|
||||
none of the blacklists. This should be a string, e.g.,
|
||||
"(Variable|Add)".
|
||||
nodes, e.g., `"(Variable|Add)"`.
|
||||
If both node_name_regex_blacklist and op_type_regex_blacklist
|
||||
are set, the two filtering operations will occur in a logical `OR`
|
||||
relation. In other words, a node will be excluded if it hits either of
|
||||
the two blacklists; a node will be included if and only if it hits
|
||||
neither of the blacklists.
|
||||
"""
|
||||
|
||||
if isinstance(debug_ops, str):
|
||||
|
@ -176,7 +176,7 @@ class OnSessionInitResponse(object):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
action: (OnSessionInitAction) Debugger action to take on session init.
|
||||
action: (`OnSessionInitAction`) Debugger action to take on session init.
|
||||
"""
|
||||
_check_type(action, str)
|
||||
self.action = action
|
||||
@ -191,7 +191,7 @@ class OnRunStartRequest(object):
|
||||
|
||||
def __init__(self, fetches, feed_dict, run_options, run_metadata,
|
||||
run_call_count):
|
||||
"""Constructor of OnRunStartRequest.
|
||||
"""Constructor of `OnRunStartRequest`.
|
||||
|
||||
Args:
|
||||
fetches: Fetch targets of the run() call.
|
||||
@ -233,10 +233,10 @@ class OnRunStartResponse(object):
|
||||
"""
|
||||
|
||||
def __init__(self, action, debug_urls):
|
||||
"""Constructor of OnRunStartResponse.
|
||||
"""Constructor of `OnRunStartResponse`.
|
||||
|
||||
Args:
|
||||
action: (OnRunStartAction) the action actually taken by the wrapped
|
||||
action: (`OnRunStartAction`) the action actually taken by the wrapped
|
||||
session for the run() call.
|
||||
debug_urls: (list of str) debug_urls used in watching the tensors during
|
||||
the run() call.
|
||||
@ -260,10 +260,10 @@ class OnRunEndRequest(object):
|
||||
run_metadata=None,
|
||||
client_graph_def=None,
|
||||
tf_error=None):
|
||||
"""Constructor for OnRunEndRequest.
|
||||
"""Constructor for `OnRunEndRequest`.
|
||||
|
||||
Args:
|
||||
performed_action: (OnRunStartAction) Actually-performed action by the
|
||||
performed_action: (`OnRunStartAction`) Actually-performed action by the
|
||||
debug-wrapper session.
|
||||
run_metadata: run_metadata output from the run() call (if any).
|
||||
client_graph_def: (GraphDef) GraphDef from the client side, i.e., from
|
||||
@ -303,13 +303,13 @@ class BaseDebugWrapperSession(session.SessionInterface):
|
||||
# is available.
|
||||
|
||||
def __init__(self, sess):
|
||||
"""Constructor of BaseDebugWrapperSession.
|
||||
"""Constructor of `BaseDebugWrapperSession`.
|
||||
|
||||
Args:
|
||||
sess: An (unwrapped) TensorFlow session instance.
|
||||
|
||||
Raises:
|
||||
ValueError: On invalid OnSessionInitAction value.
|
||||
ValueError: On invalid `OnSessionInitAction` value.
|
||||
"""
|
||||
|
||||
_check_type(sess, session.BaseSession)
|
||||
@ -352,16 +352,16 @@ class BaseDebugWrapperSession(session.SessionInterface):
|
||||
"""Wrapper around Session.run() that inserts tensor watch options.
|
||||
|
||||
Args:
|
||||
fetches: Same as the fetches arg to regular Session.run()
|
||||
feed_dict: Same as the feed_dict arg to regular Session.run()
|
||||
options: Same as the options arg to regular Session.run()
|
||||
run_metadata: Same as the run_metadata to regular Session.run()
|
||||
fetches: Same as the `fetches` arg to regular `Session.run()`.
|
||||
feed_dict: Same as the `feed_dict` arg to regular `Session.run()`.
|
||||
options: Same as the `options` arg to regular `Session.run()`.
|
||||
run_metadata: Same as the `run_metadata` arg to regular `Session.run()`.
|
||||
|
||||
Returns:
|
||||
Simply forwards the output of the wrapped Session.run() call.
|
||||
Simply forwards the output of the wrapped `Session.run()` call.
|
||||
|
||||
Raises:
|
||||
ValueError: On invalid OnRunStartAction value.
|
||||
ValueError: On invalid `OnRunStartAction` value.
|
||||
"""
|
||||
|
||||
self._run_call_count += 1
|
||||
@ -458,11 +458,11 @@ class BaseDebugWrapperSession(session.SessionInterface):
|
||||
The invocation happens right before the constructor ends.
|
||||
|
||||
Args:
|
||||
request: (OnSessionInitRequest) callback request carrying information
|
||||
request: (`OnSessionInitRequest`) callback request carrying information
|
||||
such as the session being wrapped.
|
||||
|
||||
Returns:
|
||||
An instance of OnSessionInitResponse.
|
||||
An instance of `OnSessionInitResponse`.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
@ -474,12 +474,13 @@ class BaseDebugWrapperSession(session.SessionInterface):
|
||||
after an increment of run call counter.
|
||||
|
||||
Args:
|
||||
request: (OnRunStartRequest) callback request object carrying information
|
||||
about the run call such as the fetches, feed dict, run options, run
|
||||
metadata, and how many run() calls to this wrapper session has occurred.
|
||||
request: (`OnRunStartRequest`) callback request object carrying
|
||||
information about the run call such as the fetches, feed dict, run
|
||||
options, run metadata, and how many `run()` calls to this wrapper
|
||||
session have occurred.
|
||||
|
||||
Returns:
|
||||
An instance of OnRunStartResponse, carrying information to
|
||||
An instance of `OnRunStartResponse`, carrying information to
|
||||
1) direct the wrapper session to perform a specified action (e.g., run
|
||||
with or without debug tensor watching, invoking the stepper.)
|
||||
2) debug URLs used to watch the tensors.
|
||||
@ -493,12 +494,12 @@ class BaseDebugWrapperSession(session.SessionInterface):
|
||||
The invocation happens right before the wrapper exits its run() call.
|
||||
|
||||
Args:
|
||||
request: (OnRunEndRequest) callback request object carrying information
|
||||
request: (`OnRunEndRequest`) callback request object carrying information
|
||||
such as the actual action performed by the session wrapper for the
|
||||
run() call.
|
||||
|
||||
Returns:
|
||||
An instance of OnRunStartResponse.
|
||||
An instance of `OnRunStartResponse`.
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
|
@ -37,18 +37,23 @@ _DUMP_ROOT_PREFIX = "tfdbg_"
|
||||
|
||||
|
||||
class LocalCLIDebugWrapperSession(framework.BaseDebugWrapperSession):
|
||||
"""Concrete subclass of BaseDebugWrapperSession implementing a local CLI."""
|
||||
"""Concrete subclass of BaseDebugWrapperSession implementing a local CLI.
|
||||
|
||||
This class has all the methods that a `session.Session` object has, in order
|
||||
to support debugging with minimal code changes. Invoking its `run()` method
|
||||
will launch the command-line interface (CLI) of tfdbg.
|
||||
"""
|
||||
|
||||
def __init__(self, sess, dump_root=None, log_usage=True):
|
||||
"""Constructor of LocalCLIDebugWrapperSession.
|
||||
|
||||
Args:
|
||||
sess: (BaseSession subtypes) The TensorFlow Session object being wrapped.
|
||||
dump_root: (str) Optional path to the dump root directory. Must be either
|
||||
a directory that does not exist or an empty directory. If the directory
|
||||
sess: The TensorFlow `Session` object being wrapped.
|
||||
dump_root: (`str`) optional path to the dump root directory. Must be a
|
||||
directory that does not exist or an empty directory. If the directory
|
||||
does not exist, it will be created by the debugger core during debug
|
||||
run() calls and removed afterwards.
|
||||
log_usage: (bool) Whether the usage of this class is to be logged.
|
||||
`run()` calls and removed afterwards.
|
||||
log_usage: (`bool`) whether the usage of this class is to be logged.
|
||||
|
||||
Raises:
|
||||
ValueError: If dump_root is an existing and non-empty directory or if
|
||||
@ -137,14 +142,10 @@ class LocalCLIDebugWrapperSession(framework.BaseDebugWrapperSession):
|
||||
def add_tensor_filter(self, filter_name, tensor_filter):
|
||||
"""Add a tensor filter.
|
||||
|
||||
The signature of this command is identical to that of
|
||||
debug_data.DebugDumpDir.add_tensor_filter(). This method is a thin wrapper
|
||||
around that method.
|
||||
|
||||
Args:
|
||||
filter_name: (str) Name of the filter.
|
||||
tensor_filter: (callable) The filter callable. See the doc string of
|
||||
debug_data.DebugDumpDir.add_tensor_filter() for more details.
|
||||
filter_name: (`str`) name of the filter.
|
||||
tensor_filter: (`callable`) the filter callable. See the doc string of
|
||||
`DebugDumpDir.find()` for more details about its signature.
|
||||
"""
|
||||
|
||||
self._tensor_filters[filter_name] = tensor_filter
|
||||
@ -153,7 +154,7 @@ class LocalCLIDebugWrapperSession(framework.BaseDebugWrapperSession):
|
||||
"""Overrides on-session-init callback.
|
||||
|
||||
Args:
|
||||
request: An instance of OnSessionInitRequest.
|
||||
request: An instance of `OnSessionInitRequest`.
|
||||
|
||||
Returns:
|
||||
An instance of OnSessionInitResponse.
|
||||
@ -166,13 +167,13 @@ class LocalCLIDebugWrapperSession(framework.BaseDebugWrapperSession):
|
||||
"""Overrides on-run-start callback.
|
||||
|
||||
Invoke the CLI to let user choose what action to take:
|
||||
run / run --no_debug / step.
|
||||
`run` / `invoke_stepper`.
|
||||
|
||||
Args:
|
||||
request: An instance of OnSessionInitRequest.
|
||||
request: An instance of `OnSessionInitRequest`.
|
||||
|
||||
Returns:
|
||||
An instance of OnSessionInitResponse.
|
||||
An instance of `OnSessionInitResponse`.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If user chooses to prematurely exit the debugger.
|
||||
@ -483,10 +484,11 @@ class LocalCLIDebugWrapperSession(framework.BaseDebugWrapperSession):
|
||||
"""Overrides method in base class to implement interactive node stepper.
|
||||
|
||||
Args:
|
||||
node_stepper: (stepper.NodeStepper) The underlying NodeStepper API object.
|
||||
restore_variable_values_on_exit: (bool) Whether any variables whose values
|
||||
have been altered during this node-stepper invocation should be restored
|
||||
to their old values when this invocation ends.
|
||||
node_stepper: (`stepper.NodeStepper`) The underlying NodeStepper API
|
||||
object.
|
||||
restore_variable_values_on_exit: (`bool`) Whether any variables whose
|
||||
values have been altered during this node-stepper invocation should be
|
||||
restored to their old values when this invocation ends.
|
||||
|
||||
Returns:
|
||||
The same return values as the `Session.run()` call on the same fetches as
|
||||
|
@ -25,6 +25,7 @@ import sys
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow.contrib import ffmpeg
|
||||
from tensorflow.python import debug as tf_debug
|
||||
from tensorflow.python.client import client_lib
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import docs
|
||||
@ -79,6 +80,7 @@ def module_names():
|
||||
"tf.contrib.solvers",
|
||||
"tf.contrib.training",
|
||||
"tf.contrib.util",
|
||||
"tf_debug",
|
||||
]
|
||||
|
||||
|
||||
@ -89,6 +91,8 @@ def find_module(base_module, name):
|
||||
# to size concerns.
|
||||
elif name == "tf.contrib.ffmpeg":
|
||||
return ffmpeg
|
||||
elif name == "tf_debug":
|
||||
return tf_debug
|
||||
elif name.startswith("tf."):
|
||||
subname = name[3:]
|
||||
subnames = subname.split(".")
|
||||
@ -240,6 +244,7 @@ def all_libraries(module_to_name, members, documented):
|
||||
library("contrib.util", "Utilities (contrib)", tf.contrib.util),
|
||||
library("contrib.copy_graph", "Copying Graph Elements (contrib)",
|
||||
tf.contrib.copy_graph),
|
||||
library("tf_debug", "TensorFlow Debugger", tf_debug),
|
||||
])
|
||||
|
||||
_hidden_symbols = ["Event", "LogMessage", "Summary", "SessionLog", "xrange",
|
||||
|
Loading…
Reference in New Issue
Block a user