Delete some unnecessary code.
PiperOrigin-RevId: 168026197
This commit is contained in:
parent
c17096fe77
commit
affbc9b7b3
@ -33,7 +33,7 @@ from tensorflow.python.framework import test_util
|
|||||||
|
|
||||||
def truncated_normal(shape):
|
def truncated_normal(shape):
|
||||||
return execute.execute(
|
return execute.execute(
|
||||||
'TruncatedNormal',
|
b'TruncatedNormal',
|
||||||
1,
|
1,
|
||||||
inputs=[shape],
|
inputs=[shape],
|
||||||
attrs=('dtype', dtypes.float32.as_datatype_enum, 'T',
|
attrs=('dtype', dtypes.float32.as_datatype_enum, 'T',
|
||||||
@ -118,7 +118,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
y = tensor.Tensor(2.)
|
y = tensor.Tensor(2.)
|
||||||
# Add would fail if t2 were not on GPU
|
# Add would fail if t2 were not on GPU
|
||||||
result = execute.execute(
|
result = execute.execute(
|
||||||
'Add', 1, inputs=[x, y],
|
b'Add', 1, inputs=[x, y],
|
||||||
attrs=('T', x.dtype.as_datatype_enum))[0].as_cpu_tensor().numpy()
|
attrs=('T', x.dtype.as_datatype_enum))[0].as_cpu_tensor().numpy()
|
||||||
self.assertEqual(3, result)
|
self.assertEqual(3, result)
|
||||||
|
|
||||||
@ -161,7 +161,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
three = tensor.Tensor(3)
|
three = tensor.Tensor(3)
|
||||||
five = tensor.Tensor(5)
|
five = tensor.Tensor(5)
|
||||||
product = execute.execute(
|
product = execute.execute(
|
||||||
'Mul',
|
b'Mul',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[three, five],
|
inputs=[three, five],
|
||||||
attrs=('T', three.dtype.as_datatype_enum))[0]
|
attrs=('T', three.dtype.as_datatype_enum))[0]
|
||||||
@ -171,7 +171,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
# num_outputs provided is 50, but only one output is produced.
|
# num_outputs provided is 50, but only one output is produced.
|
||||||
# That should be okay.
|
# That should be okay.
|
||||||
product = execute.execute(
|
product = execute.execute(
|
||||||
'Mul',
|
b'Mul',
|
||||||
num_outputs=50,
|
num_outputs=50,
|
||||||
inputs=[tensor.Tensor(3), tensor.Tensor(5)],
|
inputs=[tensor.Tensor(3), tensor.Tensor(5)],
|
||||||
attrs=('T', dtypes.int32.as_datatype_enum))[0]
|
attrs=('T', dtypes.int32.as_datatype_enum))[0]
|
||||||
@ -183,7 +183,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
three = tensor.Tensor([[3.]]).as_gpu_tensor()
|
three = tensor.Tensor([[3.]]).as_gpu_tensor()
|
||||||
five = tensor.Tensor([[5.]]).as_gpu_tensor()
|
five = tensor.Tensor([[5.]]).as_gpu_tensor()
|
||||||
product = execute.execute(
|
product = execute.execute(
|
||||||
'MatMul',
|
b'MatMul',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[three, five],
|
inputs=[three, five],
|
||||||
attrs=('transpose_a', False, 'transpose_b', False, 'T',
|
attrs=('transpose_a', False, 'transpose_b', False, 'T',
|
||||||
@ -192,7 +192,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
|
|
||||||
def testExecuteStringAttr(self):
|
def testExecuteStringAttr(self):
|
||||||
checked_three = execute.execute(
|
checked_three = execute.execute(
|
||||||
'CheckNumerics',
|
b'CheckNumerics',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3.)],
|
inputs=[tensor.Tensor(3.)],
|
||||||
attrs=('message', 'just checking', 'T',
|
attrs=('message', 'just checking', 'T',
|
||||||
@ -202,14 +202,14 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteStringAttrBadValue(self):
|
def testExecuteStringAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
_ = execute.execute(
|
_ = execute.execute(
|
||||||
'CheckNumerics',
|
b'CheckNumerics',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3.)],
|
inputs=[tensor.Tensor(3.)],
|
||||||
attrs=('message', 1, 'T', dtypes.float32.as_datatype_enum))
|
attrs=('message', 1, 'T', dtypes.float32.as_datatype_enum))
|
||||||
|
|
||||||
def testExecuteFloatAttr(self):
|
def testExecuteFloatAttr(self):
|
||||||
almost_equal = execute.execute(
|
almost_equal = execute.execute(
|
||||||
'ApproximateEqual',
|
b'ApproximateEqual',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3.0), tensor.Tensor(2.9)],
|
inputs=[tensor.Tensor(3.0), tensor.Tensor(2.9)],
|
||||||
attrs=('tolerance', 0.3, 'T', dtypes.float32.as_datatype_enum))[0]
|
attrs=('tolerance', 0.3, 'T', dtypes.float32.as_datatype_enum))[0]
|
||||||
@ -218,14 +218,14 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteFloatAttrBadValue(self):
|
def testExecuteFloatAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
_ = execute.execute(
|
_ = execute.execute(
|
||||||
'ApproximateEqual',
|
b'ApproximateEqual',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3.0), tensor.Tensor(2.9)],
|
inputs=[tensor.Tensor(3.0), tensor.Tensor(2.9)],
|
||||||
attrs=('tolerance', '0.3', 'T', dtypes.float32.as_datatype_enum))
|
attrs=('tolerance', '0.3', 'T', dtypes.float32.as_datatype_enum))
|
||||||
|
|
||||||
def testExecuteIntAttr(self):
|
def testExecuteIntAttr(self):
|
||||||
total = execute.execute(
|
total = execute.execute(
|
||||||
'AddN',
|
b'AddN',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3), tensor.Tensor(4)],
|
inputs=[tensor.Tensor(3), tensor.Tensor(4)],
|
||||||
attrs=('T', dtypes.int32.as_datatype_enum, 'N', 2))[0]
|
attrs=('T', dtypes.int32.as_datatype_enum, 'N', 2))[0]
|
||||||
@ -234,7 +234,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteIntAttrBadValue(self):
|
def testExecuteIntAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
_ = execute.execute(
|
_ = execute.execute(
|
||||||
'AddN',
|
b'AddN',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3), tensor.Tensor(4)],
|
inputs=[tensor.Tensor(3), tensor.Tensor(4)],
|
||||||
attrs=('T', dtypes.int32.as_datatype_enum, 'N', '2'))
|
attrs=('T', dtypes.int32.as_datatype_enum, 'N', '2'))
|
||||||
@ -242,7 +242,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
# Looks like we don't have an existing op with list(bool) attrs.
|
# Looks like we don't have an existing op with list(bool) attrs.
|
||||||
def testExecuteBoolAttr(self):
|
def testExecuteBoolAttr(self):
|
||||||
product = execute.execute(
|
product = execute.execute(
|
||||||
'MatMul',
|
b'MatMul',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor([[3]]),
|
inputs=[tensor.Tensor([[3]]),
|
||||||
tensor.Tensor([[5]])],
|
tensor.Tensor([[5]])],
|
||||||
@ -252,7 +252,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
|
|
||||||
def testExecuteShapeAttr(self):
|
def testExecuteShapeAttr(self):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'VarHandleOp',
|
b'VarHandleOp',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
attrs=('shape', [1, 2], 'dtype', dtypes.int32.as_datatype_enum,
|
attrs=('shape', [1, 2], 'dtype', dtypes.int32.as_datatype_enum,
|
||||||
@ -261,7 +261,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteShapeAttrBadValue(self):
|
def testExecuteShapeAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'VarHandleOp',
|
b'VarHandleOp',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
attrs=('shape', 1, 'dtype', dtypes.int32.as_datatype_enum,
|
attrs=('shape', 1, 'dtype', dtypes.int32.as_datatype_enum,
|
||||||
@ -269,7 +269,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
|
|
||||||
def testExecuteListStringAttr(self):
|
def testExecuteListStringAttr(self):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'TensorSummary',
|
b'TensorSummary',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3.0)],
|
inputs=[tensor.Tensor(3.0)],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'description',
|
attrs=('T', dtypes.float32.as_datatype_enum, 'description',
|
||||||
@ -279,7 +279,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListStringAttrBadValue(self):
|
def testExecuteListStringAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'TensorSummary',
|
b'TensorSummary',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3.0)],
|
inputs=[tensor.Tensor(3.0)],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'description', '',
|
attrs=('T', dtypes.float32.as_datatype_enum, 'description', '',
|
||||||
@ -288,7 +288,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListStringAttrBadListValue(self):
|
def testExecuteListStringAttrBadListValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'TensorSummary',
|
b'TensorSummary',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3.0)],
|
inputs=[tensor.Tensor(3.0)],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'description', '',
|
attrs=('T', dtypes.float32.as_datatype_enum, 'description', '',
|
||||||
@ -296,7 +296,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
|
|
||||||
def testExecuteListFloatAttr(self):
|
def testExecuteListFloatAttr(self):
|
||||||
b = execute.execute(
|
b = execute.execute(
|
||||||
'Bucketize',
|
b'Bucketize',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor([3.0, 5.0, 7.0])],
|
inputs=[tensor.Tensor([3.0, 5.0, 7.0])],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'boundaries', [4.0,
|
attrs=('T', dtypes.float32.as_datatype_enum, 'boundaries', [4.0,
|
||||||
@ -306,7 +306,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListFloatAttrBadValue(self):
|
def testExecuteListFloatAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Bucketize',
|
b'Bucketize',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor([3.0, 5.0, 7.0])],
|
inputs=[tensor.Tensor([3.0, 5.0, 7.0])],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'boundaries', 4.0))
|
attrs=('T', dtypes.float32.as_datatype_enum, 'boundaries', 4.0))
|
||||||
@ -314,7 +314,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListFloatAttrBadListValue(self):
|
def testExecuteListFloatAttrBadListValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Bucketize',
|
b'Bucketize',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor([3.0, 5.0, 7.0])],
|
inputs=[tensor.Tensor([3.0, 5.0, 7.0])],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'boundaries',
|
attrs=('T', dtypes.float32.as_datatype_enum, 'boundaries',
|
||||||
@ -322,7 +322,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
|
|
||||||
def testExecuteListIntAttr(self):
|
def testExecuteListIntAttr(self):
|
||||||
b = execute.execute(
|
b = execute.execute(
|
||||||
'Squeeze',
|
b'Squeeze',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor([[[3.0]]])],
|
inputs=[tensor.Tensor([[[3.0]]])],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'squeeze_dims', [0, 2]))[0]
|
attrs=('T', dtypes.float32.as_datatype_enum, 'squeeze_dims', [0, 2]))[0]
|
||||||
@ -331,7 +331,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListIntAttrBadValue(self):
|
def testExecuteListIntAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Squeeze',
|
b'Squeeze',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor([[[3.0]]])],
|
inputs=[tensor.Tensor([[[3.0]]])],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'squeeze_dims', 0))
|
attrs=('T', dtypes.float32.as_datatype_enum, 'squeeze_dims', 0))
|
||||||
@ -339,7 +339,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListIntAttrBadListValue(self):
|
def testExecuteListIntAttrBadListValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Squeeze',
|
b'Squeeze',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor([[[3.0]]])],
|
inputs=[tensor.Tensor([[[3.0]]])],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum, 'squeeze_dims',
|
attrs=('T', dtypes.float32.as_datatype_enum, 'squeeze_dims',
|
||||||
@ -347,7 +347,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
|
|
||||||
def testExecuteListTypeListShapeAttr(self):
|
def testExecuteListTypeListShapeAttr(self):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Barrier',
|
b'Barrier',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
attrs=('component_types', [dtypes.float64.as_datatype_enum], 'shapes',
|
attrs=('component_types', [dtypes.float64.as_datatype_enum], 'shapes',
|
||||||
@ -356,7 +356,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListTypeAttrBadValue(self):
|
def testExecuteListTypeAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Barrier',
|
b'Barrier',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
attrs=('component_types', dtypes.float64.as_datatype_enum, 'shapes',
|
attrs=('component_types', dtypes.float64.as_datatype_enum, 'shapes',
|
||||||
@ -365,7 +365,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListTypeAttrBadListValue(self):
|
def testExecuteListTypeAttrBadListValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Barrier',
|
b'Barrier',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
attrs=('component_types', '1', 'shapes', [[1, 2]], 'capacity', -1,
|
attrs=('component_types', '1', 'shapes', [[1, 2]], 'capacity', -1,
|
||||||
@ -374,7 +374,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListShapeAttrBadValue(self):
|
def testExecuteListShapeAttrBadValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Barrier',
|
b'Barrier',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
attrs=('component_types', [dtypes.float64.as_datatype_enum], 'shapes',
|
attrs=('component_types', [dtypes.float64.as_datatype_enum], 'shapes',
|
||||||
@ -383,7 +383,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteListShapeAttrBadListValue(self):
|
def testExecuteListShapeAttrBadListValue(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Barrier',
|
b'Barrier',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
attrs=('component_types', [dtypes.float64.as_datatype_enum], 'shapes',
|
attrs=('component_types', [dtypes.float64.as_datatype_enum], 'shapes',
|
||||||
@ -393,7 +393,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
split_dim = 1
|
split_dim = 1
|
||||||
value = [[0, 1, 2], [3, 4, 5]]
|
value = [[0, 1, 2], [3, 4, 5]]
|
||||||
x1, x2, x3 = execute.execute(
|
x1, x2, x3 = execute.execute(
|
||||||
'Split',
|
b'Split',
|
||||||
num_outputs=3,
|
num_outputs=3,
|
||||||
inputs=[tensor.Tensor(split_dim),
|
inputs=[tensor.Tensor(split_dim),
|
||||||
tensor.Tensor(value)],
|
tensor.Tensor(value)],
|
||||||
@ -405,18 +405,18 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
def testExecuteBadNumOutputsArgument(self):
|
def testExecuteBadNumOutputsArgument(self):
|
||||||
with self.assertRaises(TypeError):
|
with self.assertRaises(TypeError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Relu', [],
|
b'Relu', [],
|
||||||
inputs=[tensor.Tensor(3.0)],
|
inputs=[tensor.Tensor(3.0)],
|
||||||
attrs=('T', dtypes.float32.as_datatype_enum))
|
attrs=('T', dtypes.float32.as_datatype_enum))
|
||||||
|
|
||||||
def testExecuteUnknownOp(self):
|
def testExecuteUnknownOp(self):
|
||||||
with self.assertRaises(errors.NotFoundError):
|
with self.assertRaises(errors.NotFoundError):
|
||||||
execute.execute('BlahBlahBlah', num_outputs=1, inputs=[], attrs=None)
|
execute.execute(b'BlahBlahBlah', num_outputs=1, inputs=[], attrs=None)
|
||||||
|
|
||||||
def testExecuteUnknownAttr(self):
|
def testExecuteUnknownAttr(self):
|
||||||
with self.assertRaises(errors.InvalidArgumentError):
|
with self.assertRaises(errors.InvalidArgumentError):
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Identity',
|
b'Identity',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[tensor.Tensor(3)],
|
inputs=[tensor.Tensor(3)],
|
||||||
attrs=('T', dtypes.int32.as_datatype_enum, 'unknown_attr', 'blah'))
|
attrs=('T', dtypes.int32.as_datatype_enum, 'unknown_attr', 'blah'))
|
||||||
@ -425,7 +425,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
|
|
||||||
def add(x, y):
|
def add(x, y):
|
||||||
return execute.execute(
|
return execute.execute(
|
||||||
'Add',
|
b'Add',
|
||||||
num_outputs=1,
|
num_outputs=1,
|
||||||
inputs=[x, y],
|
inputs=[x, y],
|
||||||
attrs=('T', dtypes.int32.as_datatype_enum))[0]
|
attrs=('T', dtypes.int32.as_datatype_enum))[0]
|
||||||
@ -447,7 +447,7 @@ class TFETest(test_util.TensorFlowTestCase):
|
|||||||
y = truncated_normal(shape)
|
y = truncated_normal(shape)
|
||||||
# Add would fail if x and y were not on the same device.
|
# Add would fail if x and y were not on the same device.
|
||||||
execute.execute(
|
execute.execute(
|
||||||
'Add', 1, inputs=[x, y], attrs=('T', x.dtype.as_datatype_enum))
|
b'Add', 1, inputs=[x, y], attrs=('T', x.dtype.as_datatype_enum))
|
||||||
|
|
||||||
def testInvalidDevice(self):
|
def testInvalidDevice(self):
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
|
@ -63,15 +63,14 @@ def execute(op_name, num_outputs, inputs, attrs=None, name=None):
|
|||||||
device_name = ctx.device_name
|
device_name = ctx.device_name
|
||||||
try:
|
try:
|
||||||
outh = pywrap_tensorflow.TFE_Py_Execute(ctx._handle, device_name,
|
outh = pywrap_tensorflow.TFE_Py_Execute(ctx._handle, device_name,
|
||||||
str(op_name), input_handles, attrs,
|
op_name, input_handles, attrs,
|
||||||
num_outputs)
|
num_outputs)
|
||||||
# pylint: enable=protected-access
|
except core._NotOkStatusException as e:
|
||||||
except core._NotOkStatusException as e: # pylint: disable=protected-access
|
|
||||||
if name is not None:
|
if name is not None:
|
||||||
message = e.message + " name: " + name
|
message = e.message + " name: " + name
|
||||||
else:
|
else:
|
||||||
message = e.message
|
message = e.message
|
||||||
raise core._status_to_exception(e.code, message) # pylint: disable=protected-access
|
raise core._status_to_exception(e.code, message)
|
||||||
# pylint: enable=protected-access
|
# pylint: enable=protected-access
|
||||||
|
|
||||||
tensors = [tensor._tensor_from_handle(x) for x in outh] # pylint: disable=protected-access
|
tensors = [tensor._tensor_from_handle(x) for x in outh] # pylint: disable=protected-access
|
||||||
|
@ -261,7 +261,7 @@ class _GraphModeFunction(object):
|
|||||||
outputs[i].set_shape(s)
|
outputs[i].set_shape(s)
|
||||||
else:
|
else:
|
||||||
outputs = execute.execute(
|
outputs = execute.execute(
|
||||||
signature.name,
|
str(signature.name),
|
||||||
num_outputs=len(signature.output_arg),
|
num_outputs=len(signature.output_arg),
|
||||||
inputs=all_args)
|
inputs=all_args)
|
||||||
real_outputs = outputs[:len(self._returns)]
|
real_outputs = outputs[:len(self._returns)]
|
||||||
@ -321,7 +321,7 @@ class _GraphModeFunction(object):
|
|||||||
for x in tensor_inputs
|
for x in tensor_inputs
|
||||||
]
|
]
|
||||||
result = execute.execute(
|
result = execute.execute(
|
||||||
self._func_name,
|
str(self._func_name),
|
||||||
num_outputs=self._num_outputs,
|
num_outputs=self._num_outputs,
|
||||||
inputs=tensor_inputs + self._extra_inputs)
|
inputs=tensor_inputs + self._extra_inputs)
|
||||||
|
|
||||||
|
@ -650,7 +650,7 @@ void GenEagerPythonOp::AddEagerAttrs() {
|
|||||||
void GenEagerPythonOp::AddEagerExecute(const string& num_outputs_expr) {
|
void GenEagerPythonOp::AddEagerExecute(const string& num_outputs_expr) {
|
||||||
const string return_prefix = " _result = _execute.execute(";
|
const string return_prefix = " _result = _execute.execute(";
|
||||||
const string return_args =
|
const string return_args =
|
||||||
strings::StrCat("\"", op_def_.name(), "\", ", num_outputs_expr,
|
strings::StrCat("b\"", op_def_.name(), "\", ", num_outputs_expr,
|
||||||
", inputs=_inputs_flat, attrs=_attrs, name=name)");
|
", inputs=_inputs_flat, attrs=_attrs, name=name)");
|
||||||
strings::StrAppend(&result_,
|
strings::StrAppend(&result_,
|
||||||
// Wrap the arguments, and indent to the (.
|
// Wrap the arguments, and indent to the (.
|
||||||
|
@ -60,7 +60,7 @@ def _eager_reshape(tensor, shape):
|
|||||||
attr_tshape = attr_tshape.as_datatype_enum
|
attr_tshape = attr_tshape.as_datatype_enum
|
||||||
inputs_flat = [tensor, shape]
|
inputs_flat = [tensor, shape]
|
||||||
attrs = ("T", attr_t, "Tshape", attr_tshape)
|
attrs = ("T", attr_t, "Tshape", attr_tshape)
|
||||||
result, = execute.execute("Reshape", 1, inputs=inputs_flat, attrs=attrs)
|
result, = execute.execute(b"Reshape", 1, inputs=inputs_flat, attrs=attrs)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
@ -70,7 +70,7 @@ def _eager_fill(dims, value):
|
|||||||
dims = convert_to_eager_tensor(dims, dtypes.int32)
|
dims = convert_to_eager_tensor(dims, dtypes.int32)
|
||||||
inputs_flat = [dims, value]
|
inputs_flat = [dims, value]
|
||||||
attrs = ("T", attr_t)
|
attrs = ("T", attr_t)
|
||||||
result, = execute.execute("Fill", 1, inputs=inputs_flat, attrs=attrs)
|
result, = execute.execute(b"Fill", 1, inputs=inputs_flat, attrs=attrs)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
@ -84,13 +84,6 @@ def convert_to_eager_tensor(t, dtype=None):
|
|||||||
if dtype is not None and t.dtype != dtype:
|
if dtype is not None and t.dtype != dtype:
|
||||||
raise TypeError("Expected tensor with type %r not %r" % (dtype, t.dtype))
|
raise TypeError("Expected tensor with type %r not %r" % (dtype, t.dtype))
|
||||||
return t
|
return t
|
||||||
# Handle converting ResourceVariable to Tensor.
|
|
||||||
# TODO(josh11b): get rid of this explicit ugly conversion once we have a more
|
|
||||||
# general scheme in place.
|
|
||||||
try:
|
|
||||||
return t._dense_var_to_tensor(dtype=dtype, as_ref=False) # pylint: disable=protected-access
|
|
||||||
except AttributeError:
|
|
||||||
pass
|
|
||||||
if isinstance(t, (int, float)):
|
if isinstance(t, (int, float)):
|
||||||
# Use a scalar cache. This will put each scalar of each type only once on
|
# Use a scalar cache. This will put each scalar of each type only once on
|
||||||
# each device. Scalars don't use much device memory but copying scalars can
|
# each device. Scalars don't use much device memory but copying scalars can
|
||||||
|
Loading…
Reference in New Issue
Block a user