Add Callbacks hooks for evaluate
and predict
.
Adds Callback methods that can be used during validation, evaluation, and prediction. PiperOrigin-RevId: 225611013
This commit is contained in:
parent
62e61f434b
commit
abe1c5f6c0
@ -45,13 +45,17 @@ from tensorflow.python.summary import summary as tf_summary
|
|||||||
from tensorflow.python.training import saver
|
from tensorflow.python.training import saver
|
||||||
from tensorflow.python.util.tf_export import tf_export
|
from tensorflow.python.util.tf_export import tf_export
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import requests
|
import requests
|
||||||
except ImportError:
|
except ImportError:
|
||||||
requests = None
|
requests = None
|
||||||
|
|
||||||
|
|
||||||
|
_TRAIN = 'train'
|
||||||
|
_TEST = 'test'
|
||||||
|
_PREDICT = 'predict'
|
||||||
|
|
||||||
|
|
||||||
# pylint: disable=protected-access
|
# pylint: disable=protected-access
|
||||||
def configure_callbacks(callbacks,
|
def configure_callbacks(callbacks,
|
||||||
model,
|
model,
|
||||||
@ -62,7 +66,7 @@ def configure_callbacks(callbacks,
|
|||||||
samples=None,
|
samples=None,
|
||||||
verbose=1,
|
verbose=1,
|
||||||
count_mode='steps',
|
count_mode='steps',
|
||||||
mode='train'):
|
mode=_TRAIN):
|
||||||
"""Configures callbacks for use in various training loops.
|
"""Configures callbacks for use in various training loops.
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
@ -89,7 +93,7 @@ def configure_callbacks(callbacks,
|
|||||||
callbacks = []
|
callbacks = []
|
||||||
|
|
||||||
# Add additional callbacks during training.
|
# Add additional callbacks during training.
|
||||||
if mode == 'train':
|
if mode == _TRAIN:
|
||||||
model.history = History()
|
model.history = History()
|
||||||
stateful_metric_names = None
|
stateful_metric_names = None
|
||||||
if hasattr(model, 'metrics_names'):
|
if hasattr(model, 'metrics_names'):
|
||||||
@ -109,7 +113,7 @@ def configure_callbacks(callbacks,
|
|||||||
callback_metrics = []
|
callback_metrics = []
|
||||||
# When we have deferred build scenario with iterator input, we will compile
|
# When we have deferred build scenario with iterator input, we will compile
|
||||||
# when we standardize first batch of data.
|
# when we standardize first batch of data.
|
||||||
if mode != 'predict' and hasattr(model, 'metrics_names'):
|
if mode != _PREDICT and hasattr(model, 'metrics_names'):
|
||||||
callback_metrics = copy.copy(model.metrics_names)
|
callback_metrics = copy.copy(model.metrics_names)
|
||||||
if do_validation:
|
if do_validation:
|
||||||
callback_metrics += ['val_' + n for n in model.metrics_names]
|
callback_metrics += ['val_' + n for n in model.metrics_names]
|
||||||
@ -142,6 +146,17 @@ def _is_generator_like(data):
|
|||||||
data, (Sequence, iterator_ops.Iterator, iterator_ops.EagerIterator)))
|
data, (Sequence, iterator_ops.Iterator, iterator_ops.EagerIterator)))
|
||||||
|
|
||||||
|
|
||||||
|
def make_logs(model, logs, outputs, mode, prefix=''):
|
||||||
|
"""Computes logs for sending to `on_batch_end` methods."""
|
||||||
|
if mode in {_TRAIN, _TEST}:
|
||||||
|
if hasattr(model, 'metrics_names'):
|
||||||
|
for label, output in zip(model.metrics_names, outputs):
|
||||||
|
logs[prefix + label] = output
|
||||||
|
else:
|
||||||
|
logs['outputs'] = outputs
|
||||||
|
return logs
|
||||||
|
|
||||||
|
|
||||||
class CallbackList(object):
|
class CallbackList(object):
|
||||||
"""Container abstracting a list of callbacks.
|
"""Container abstracting a list of callbacks.
|
||||||
|
|
||||||
@ -179,10 +194,6 @@ class CallbackList(object):
|
|||||||
|
|
||||||
def _call_batch_hook(self, mode, hook, batch, logs=None):
|
def _call_batch_hook(self, mode, hook, batch, logs=None):
|
||||||
"""Helper function for all batch_{begin | end} methods."""
|
"""Helper function for all batch_{begin | end} methods."""
|
||||||
# TODO(omalleyt): add batch hooks for test/predict.
|
|
||||||
if mode != 'train':
|
|
||||||
return
|
|
||||||
|
|
||||||
hook_name = 'on_{mode}_batch_{hook}'.format(mode=mode, hook=hook)
|
hook_name = 'on_{mode}_batch_{hook}'.format(mode=mode, hook=hook)
|
||||||
if hook == 'begin':
|
if hook == 'begin':
|
||||||
self._t_enter_batch = time.time()
|
self._t_enter_batch = time.time()
|
||||||
@ -207,87 +218,175 @@ class CallbackList(object):
|
|||||||
|
|
||||||
def _call_begin_hook(self, mode):
|
def _call_begin_hook(self, mode):
|
||||||
"""Helper function for on_{train|test|predict}_begin methods."""
|
"""Helper function for on_{train|test|predict}_begin methods."""
|
||||||
# TODO(omalleyt): add test/predict methods.
|
if mode == _TRAIN:
|
||||||
if mode == 'train':
|
|
||||||
self.on_train_begin()
|
self.on_train_begin()
|
||||||
|
elif mode == _TEST:
|
||||||
|
self.on_test_begin()
|
||||||
|
else:
|
||||||
|
self.on_predict_begin()
|
||||||
|
|
||||||
def _call_end_hook(self, mode):
|
def _call_end_hook(self, mode):
|
||||||
"""Helper function for on_{train|test|predict}_end methods."""
|
"""Helper function for on_{train|test|predict}_end methods."""
|
||||||
# TODO(omalleyt): add test/predict methods.
|
if mode == _TRAIN:
|
||||||
if mode == 'train':
|
|
||||||
self.on_train_end()
|
self.on_train_end()
|
||||||
|
elif mode == _TEST:
|
||||||
|
self.on_test_end()
|
||||||
|
else:
|
||||||
|
self.on_predict_end()
|
||||||
|
|
||||||
def on_batch_begin(self, batch, logs=None):
|
def on_batch_begin(self, batch, logs=None):
|
||||||
self._call_batch_hook('train', 'begin', batch, logs=logs)
|
self._call_batch_hook(_TRAIN, 'begin', batch, logs=logs)
|
||||||
|
|
||||||
def on_batch_end(self, batch, logs=None):
|
def on_batch_end(self, batch, logs=None):
|
||||||
self._call_batch_hook('train', 'end', batch, logs=logs)
|
self._call_batch_hook(_TRAIN, 'end', batch, logs=logs)
|
||||||
|
|
||||||
def on_epoch_begin(self, epoch, logs=None, mode='train'):
|
def on_epoch_begin(self, epoch, logs=None, mode='train'):
|
||||||
"""Called at the start of an epoch.
|
"""Calls the `on_epoch_begin` methods of its callbacks.
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
epoch: integer, index of epoch.
|
epoch: integer, index of epoch.
|
||||||
logs: dictionary of logs.
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
mode: One of 'train'/'test'/'predict'
|
mode: One of 'train'/'test'/'predict'
|
||||||
"""
|
"""
|
||||||
if mode == 'train':
|
if mode == _TRAIN:
|
||||||
logs = logs or {}
|
logs = logs or {}
|
||||||
for callback in self.callbacks:
|
for callback in self.callbacks:
|
||||||
callback.on_epoch_begin(epoch, logs)
|
callback.on_epoch_begin(epoch, logs)
|
||||||
self._reset_batch_timing()
|
self._reset_batch_timing()
|
||||||
|
|
||||||
def on_epoch_end(self, epoch, logs=None, mode='train'):
|
def on_epoch_end(self, epoch, logs=None, mode='train'):
|
||||||
"""Called at the end of an epoch.
|
"""Calls the `on_epoch_end` methods of its callbacks.
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
epoch: integer, index of epoch.
|
epoch: integer, index of epoch.
|
||||||
logs: dictionary of logs.
|
logs: dict, metric results for this training epoch, and for the
|
||||||
|
validation epoch if validation is performed. Validation result keys
|
||||||
|
are prefixed with `val_`.
|
||||||
mode: One of 'train'/'test'/'predict'
|
mode: One of 'train'/'test'/'predict'
|
||||||
"""
|
"""
|
||||||
if mode == 'train':
|
if mode == _TRAIN:
|
||||||
logs = logs or {}
|
logs = logs or {}
|
||||||
for callback in self.callbacks:
|
for callback in self.callbacks:
|
||||||
callback.on_epoch_end(epoch, logs)
|
callback.on_epoch_end(epoch, logs)
|
||||||
|
|
||||||
def on_train_batch_begin(self, batch, logs=None):
|
def on_train_batch_begin(self, batch, logs=None):
|
||||||
"""Called at the beginning of a training batch in `fit` methods.
|
"""Calls the `on_train_batch_begin` methods of its callbacks.
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
batch: integer, index of batch within the current epoch.
|
batch: integer, index of batch within the current epoch.
|
||||||
logs: dictionary of logs.
|
logs: dict. Has keys `batch` and `size` representing the current batch
|
||||||
|
number and the size of the batch.
|
||||||
"""
|
"""
|
||||||
self._call_batch_hook('train', 'begin', batch, logs=logs)
|
self._call_batch_hook(_TRAIN, 'begin', batch, logs=logs)
|
||||||
|
|
||||||
def on_train_batch_end(self, batch, logs=None):
|
def on_train_batch_end(self, batch, logs=None):
|
||||||
"""Called at the end of a training batch in `fit` methods.
|
"""Calls the `on_train_batch_end` methods of its callbacks.
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
batch: integer, index of batch within the current epoch.
|
batch: integer, index of batch within the current epoch.
|
||||||
logs: dictionary of logs.
|
logs: dict. Metric results for this batch.
|
||||||
"""
|
"""
|
||||||
self._call_batch_hook('train', 'end', batch, logs=logs)
|
self._call_batch_hook(_TRAIN, 'end', batch, logs=logs)
|
||||||
|
|
||||||
def on_train_begin(self, logs=None):
|
def on_test_batch_begin(self, batch, logs=None):
|
||||||
"""Called at the beginning of training.
|
"""Calls the `on_test_batch_begin` methods of its callbacks.
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
logs: dictionary of logs.
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Has keys `batch` and `size` representing the current batch
|
||||||
|
number and the size of the batch.
|
||||||
|
"""
|
||||||
|
self._call_batch_hook(_TEST, 'begin', batch, logs=logs)
|
||||||
|
|
||||||
|
def on_test_batch_end(self, batch, logs=None):
|
||||||
|
"""Calls the `on_test_batch_end` methods of its callbacks.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Metric results for this batch.
|
||||||
|
"""
|
||||||
|
self._call_batch_hook(_TEST, 'end', batch, logs=logs)
|
||||||
|
|
||||||
|
def on_predict_batch_begin(self, batch, logs=None):
|
||||||
|
"""Calls the `on_predict_batch_begin` methods of its callbacks.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Has keys `batch` and `size` representing the current batch
|
||||||
|
number and the size of the batch.
|
||||||
|
"""
|
||||||
|
self._call_batch_hook(_PREDICT, 'begin', batch, logs=logs)
|
||||||
|
|
||||||
|
def on_predict_batch_end(self, batch, logs=None):
|
||||||
|
"""Calls the `on_predict_batch_end` methods of its callbacks.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Metric results for this batch.
|
||||||
|
"""
|
||||||
|
self._call_batch_hook(_PREDICT, 'end', batch, logs=logs)
|
||||||
|
|
||||||
|
def on_train_begin(self, logs=None):
|
||||||
|
"""Calls the `on_train_begin` methods of its callbacks.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
"""
|
"""
|
||||||
logs = logs or {}
|
|
||||||
for callback in self.callbacks:
|
for callback in self.callbacks:
|
||||||
callback.on_train_begin(logs)
|
callback.on_train_begin(logs)
|
||||||
|
|
||||||
def on_train_end(self, logs=None):
|
def on_train_end(self, logs=None):
|
||||||
"""Called at the end of training.
|
"""Calls the `on_train_end` methods of its callbacks.
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
logs: dictionary of logs.
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
"""
|
"""
|
||||||
logs = logs or {}
|
|
||||||
for callback in self.callbacks:
|
for callback in self.callbacks:
|
||||||
callback.on_train_end(logs)
|
callback.on_train_end(logs)
|
||||||
|
|
||||||
|
def on_test_begin(self, logs=None):
|
||||||
|
"""Calls the `on_test_begin` methods of its callbacks.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
for callback in self.callbacks:
|
||||||
|
callback.on_test_begin(logs)
|
||||||
|
|
||||||
|
def on_test_end(self, logs=None):
|
||||||
|
"""Calls the `on_test_end` methods of its callbacks.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
for callback in self.callbacks:
|
||||||
|
callback.on_test_end(logs)
|
||||||
|
|
||||||
|
def on_predict_begin(self, logs=None):
|
||||||
|
"""Calls the 'on_predict_begin` methods of its callbacks.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
for callback in self.callbacks:
|
||||||
|
callback.on_predict_begin(logs)
|
||||||
|
|
||||||
|
def on_predict_end(self, logs=None):
|
||||||
|
"""Calls the `on_predict_end` methods of its callbacks.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
for callback in self.callbacks:
|
||||||
|
callback.on_predict_end(logs)
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
return iter(self.callbacks)
|
return iter(self.callbacks)
|
||||||
|
|
||||||
@ -330,31 +429,169 @@ class Callback(object):
|
|||||||
def set_model(self, model):
|
def set_model(self, model):
|
||||||
self.model = model
|
self.model = model
|
||||||
|
|
||||||
def on_epoch_begin(self, epoch, logs=None):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def on_epoch_end(self, epoch, logs=None):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def on_batch_begin(self, batch, logs=None):
|
def on_batch_begin(self, batch, logs=None):
|
||||||
pass
|
"""A backwards compatibility alias for `on_train_batch_begin`."""
|
||||||
|
|
||||||
def on_batch_end(self, batch, logs=None):
|
def on_batch_end(self, batch, logs=None):
|
||||||
pass
|
"""A backwards compatibility alias for `on_train_batch_end`."""
|
||||||
|
|
||||||
|
def on_epoch_begin(self, epoch, logs=None, mode='train'):
|
||||||
|
"""Called at the start of an epoch.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
epoch: integer, index of epoch.
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
mode: One of 'train'/'test'/'predict'
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_epoch_end(self, epoch, logs=None, mode='train'):
|
||||||
|
"""Called at the end of an epoch.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
epoch: integer, index of epoch.
|
||||||
|
logs: dict, metric results for this training epoch, and for the
|
||||||
|
validation epoch if validation is performed. Validation result keys
|
||||||
|
are prefixed with `val_`.
|
||||||
|
mode: One of 'train'/'test'/'predict'
|
||||||
|
"""
|
||||||
|
|
||||||
def on_train_batch_begin(self, batch, logs=None):
|
def on_train_batch_begin(self, batch, logs=None):
|
||||||
# For backwards compatibility
|
"""Called at the beginning of a training batch in `fit` methods.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Has keys `batch` and `size` representing the current batch
|
||||||
|
number and the size of the batch.
|
||||||
|
"""
|
||||||
|
# For backwards compatibility.
|
||||||
self.on_batch_begin(batch, logs=logs)
|
self.on_batch_begin(batch, logs=logs)
|
||||||
|
|
||||||
def on_train_batch_end(self, batch, logs=None):
|
def on_train_batch_end(self, batch, logs=None):
|
||||||
# For backwards compatibility
|
"""Called at the end of a training batch in `fit` methods.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Metric results for this batch.
|
||||||
|
"""
|
||||||
|
# For backwards compatibility.
|
||||||
self.on_batch_end(batch, logs=logs)
|
self.on_batch_end(batch, logs=logs)
|
||||||
|
|
||||||
|
def on_test_batch_begin(self, batch, logs=None):
|
||||||
|
"""Called at the beginning of a batch in `evaluate` methods.
|
||||||
|
|
||||||
|
Also called at the beginning of a validation batch in the `fit`
|
||||||
|
methods, if validation data is provided.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Has keys `batch` and `size` representing the current batch
|
||||||
|
number and the size of the batch.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_test_batch_end(self, batch, logs=None):
|
||||||
|
"""Called at the end of a batch in `evaluate` methods.
|
||||||
|
|
||||||
|
Also called at the end of a validation batch in the `fit`
|
||||||
|
methods, if validation data is provided.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Metric results for this batch.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_predict_batch_begin(self, batch, logs=None):
|
||||||
|
"""Called at the beginning of a batch in `predict` methods.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Has keys `batch` and `size` representing the current batch
|
||||||
|
number and the size of the batch.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_predict_batch_end(self, batch, logs=None):
|
||||||
|
"""Called at the end of a batch in `predict` methods.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batch: integer, index of batch within the current epoch.
|
||||||
|
logs: dict. Metric results for this batch.
|
||||||
|
"""
|
||||||
|
|
||||||
def on_train_begin(self, logs=None):
|
def on_train_begin(self, logs=None):
|
||||||
pass
|
"""Called at the beginning of training.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
|
||||||
def on_train_end(self, logs=None):
|
def on_train_end(self, logs=None):
|
||||||
pass
|
"""Called at the end of training.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_test_begin(self, logs=None):
|
||||||
|
"""Called at the beginning of evaluation or validation.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_test_end(self, logs=None):
|
||||||
|
"""Called at the end of evaluation or validation.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_predict_begin(self, logs=None):
|
||||||
|
"""Called at the beginning of prediction.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_predict_end(self, logs=None):
|
||||||
|
"""Called at the end of prediction.
|
||||||
|
|
||||||
|
Subclasses should override for any actions to run.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
logs: dict. Currently no data is passed to this argument for this method
|
||||||
|
but that may change in the future.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
@tf_export('keras.callbacks.BaseLogger')
|
@tf_export('keras.callbacks.BaseLogger')
|
||||||
|
@ -18,6 +18,7 @@ from __future__ import absolute_import
|
|||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import collections
|
||||||
import csv
|
import csv
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
@ -33,6 +34,7 @@ from tensorflow.python import keras
|
|||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.framework import random_seed
|
from tensorflow.python.framework import random_seed
|
||||||
from tensorflow.python.framework import test_util
|
from tensorflow.python.framework import test_util
|
||||||
|
from tensorflow.python.keras import keras_parameterized
|
||||||
from tensorflow.python.keras import testing_utils
|
from tensorflow.python.keras import testing_utils
|
||||||
from tensorflow.python.platform import test
|
from tensorflow.python.platform import test
|
||||||
from tensorflow.python.platform import tf_logging as logging
|
from tensorflow.python.platform import tf_logging as logging
|
||||||
@ -57,6 +59,142 @@ NUM_HIDDEN = 5
|
|||||||
BATCH_SIZE = 5
|
BATCH_SIZE = 5
|
||||||
|
|
||||||
|
|
||||||
|
class Counter(keras.callbacks.Callback):
|
||||||
|
"""Counts the number of times each callback method was run.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
method_counts: dict. Contains the counts of time each callback method was
|
||||||
|
run.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.method_counts = collections.defaultdict(int)
|
||||||
|
methods_to_count = [
|
||||||
|
'on_batch_begin', 'on_batch_end', 'on_epoch_begin', 'on_epoch_end',
|
||||||
|
'on_predict_batch_begin', 'on_predict_batch_end', 'on_predict_begin',
|
||||||
|
'on_predict_end', 'on_test_batch_begin', 'on_test_batch_end',
|
||||||
|
'on_test_begin', 'on_test_end', 'on_train_batch_begin',
|
||||||
|
'on_train_batch_end', 'on_train_begin', 'on_train_end'
|
||||||
|
]
|
||||||
|
for method_name in methods_to_count:
|
||||||
|
setattr(self, method_name,
|
||||||
|
self.wrap_with_counts(method_name, getattr(self, method_name)))
|
||||||
|
|
||||||
|
def wrap_with_counts(self, method_name, method):
|
||||||
|
|
||||||
|
def _call_and_count(*args, **kwargs):
|
||||||
|
self.method_counts[method_name] += 1
|
||||||
|
return method(*args, **kwargs)
|
||||||
|
|
||||||
|
return _call_and_count
|
||||||
|
|
||||||
|
|
||||||
|
@keras_parameterized.run_with_all_model_types
|
||||||
|
@keras_parameterized.run_all_keras_modes
|
||||||
|
class CallbackCountsTest(keras_parameterized.TestCase):
|
||||||
|
|
||||||
|
def _check_counts(self, counter, expected_counts):
|
||||||
|
"""Checks that the counts registered by `counter` are those expected."""
|
||||||
|
for method_name, expected_count in expected_counts.items():
|
||||||
|
self.assertEqual(
|
||||||
|
counter.method_counts[method_name],
|
||||||
|
expected_count,
|
||||||
|
msg='For method {}: expected {}, got: {}'.format(
|
||||||
|
method_name, expected_count, counter.method_counts[method_name]))
|
||||||
|
|
||||||
|
def _get_model(self):
|
||||||
|
layers = [
|
||||||
|
keras.layers.Dense(10, activation='relu'),
|
||||||
|
keras.layers.Dense(1, activation='sigmoid')
|
||||||
|
]
|
||||||
|
model = testing_utils.get_model_from_layers(layers, input_shape=(10,))
|
||||||
|
model.compile(
|
||||||
|
adam.AdamOptimizer(0.001),
|
||||||
|
'binary_crossentropy',
|
||||||
|
run_eagerly=testing_utils.should_run_eagerly())
|
||||||
|
return model
|
||||||
|
|
||||||
|
def test_callback_hooks_are_called_in_fit(self):
|
||||||
|
x, y = np.ones((10, 10)), np.ones((10, 1))
|
||||||
|
val_x, val_y = np.ones((4, 10)), np.ones((4, 1))
|
||||||
|
|
||||||
|
model = self._get_model()
|
||||||
|
counter = Counter()
|
||||||
|
model.fit(
|
||||||
|
x,
|
||||||
|
y,
|
||||||
|
validation_data=(val_x, val_y),
|
||||||
|
batch_size=2,
|
||||||
|
epochs=5,
|
||||||
|
callbacks=[counter])
|
||||||
|
|
||||||
|
self._check_counts(
|
||||||
|
counter, {
|
||||||
|
'on_batch_begin': 25,
|
||||||
|
'on_batch_end': 25,
|
||||||
|
'on_epoch_begin': 5,
|
||||||
|
'on_epoch_end': 5,
|
||||||
|
'on_predict_batch_begin': 0,
|
||||||
|
'on_predict_batch_end': 0,
|
||||||
|
'on_predict_begin': 0,
|
||||||
|
'on_predict_end': 0,
|
||||||
|
'on_test_batch_begin': 10,
|
||||||
|
'on_test_batch_end': 10,
|
||||||
|
'on_test_begin': 5,
|
||||||
|
'on_test_end': 5,
|
||||||
|
'on_train_batch_begin': 25,
|
||||||
|
'on_train_batch_end': 25,
|
||||||
|
'on_train_begin': 1,
|
||||||
|
'on_train_end': 1
|
||||||
|
})
|
||||||
|
|
||||||
|
def test_callback_hooks_are_called_in_evaluate(self):
|
||||||
|
x, y = np.ones((10, 10)), np.ones((10, 1))
|
||||||
|
|
||||||
|
model = self._get_model()
|
||||||
|
counter = Counter()
|
||||||
|
model.evaluate(x, y, batch_size=2, callbacks=[counter])
|
||||||
|
self._check_counts(
|
||||||
|
counter, {
|
||||||
|
'on_test_batch_begin': 5,
|
||||||
|
'on_test_batch_end': 5,
|
||||||
|
'on_test_begin': 1,
|
||||||
|
'on_test_end': 1
|
||||||
|
})
|
||||||
|
|
||||||
|
def test_callback_hooks_are_called_in_predict(self):
|
||||||
|
x = np.ones((10, 10))
|
||||||
|
|
||||||
|
model = self._get_model()
|
||||||
|
counter = Counter()
|
||||||
|
model.predict(x, batch_size=2, callbacks=[counter])
|
||||||
|
self._check_counts(
|
||||||
|
counter, {
|
||||||
|
'on_predict_batch_begin': 5,
|
||||||
|
'on_predict_batch_end': 5,
|
||||||
|
'on_predict_begin': 1,
|
||||||
|
'on_predict_end': 1
|
||||||
|
})
|
||||||
|
|
||||||
|
def test_callback_list_methods(self):
|
||||||
|
counter = Counter()
|
||||||
|
callback_list = keras.callbacks.CallbackList([counter])
|
||||||
|
|
||||||
|
batch = 0
|
||||||
|
callback_list.on_test_batch_begin(batch)
|
||||||
|
callback_list.on_test_batch_end(batch)
|
||||||
|
callback_list.on_predict_batch_begin(batch)
|
||||||
|
callback_list.on_predict_batch_end(batch)
|
||||||
|
|
||||||
|
self._check_counts(
|
||||||
|
counter, {
|
||||||
|
'on_test_batch_begin': 1,
|
||||||
|
'on_test_batch_end': 1,
|
||||||
|
'on_predict_batch_begin': 1,
|
||||||
|
'on_predict_batch_end': 1
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
class KerasCallbacksTest(test.TestCase):
|
class KerasCallbacksTest(test.TestCase):
|
||||||
|
|
||||||
def test_ModelCheckpoint(self):
|
def test_ModelCheckpoint(self):
|
||||||
|
@ -893,6 +893,7 @@ class Model(Network):
|
|||||||
verbose=1,
|
verbose=1,
|
||||||
sample_weight=None,
|
sample_weight=None,
|
||||||
steps=None,
|
steps=None,
|
||||||
|
callbacks=None,
|
||||||
max_queue_size=10,
|
max_queue_size=10,
|
||||||
workers=1,
|
workers=1,
|
||||||
use_multiprocessing=False):
|
use_multiprocessing=False):
|
||||||
@ -943,6 +944,9 @@ class Model(Network):
|
|||||||
Total number of steps (batches of samples)
|
Total number of steps (batches of samples)
|
||||||
before declaring the evaluation round finished.
|
before declaring the evaluation round finished.
|
||||||
Ignored with the default value of `None`.
|
Ignored with the default value of `None`.
|
||||||
|
callbacks: List of `keras.callbacks.Callback` instances.
|
||||||
|
List of callbacks to apply during evaluation.
|
||||||
|
See [callbacks](/api_docs/python/tf/keras/callbacks).
|
||||||
max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
|
max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
|
||||||
input only. Maximum size for the generator queue.
|
input only. Maximum size for the generator queue.
|
||||||
If unspecified, `max_queue_size` will default to 10.
|
If unspecified, `max_queue_size` will default to 10.
|
||||||
@ -1002,7 +1006,8 @@ class Model(Network):
|
|||||||
steps=steps,
|
steps=steps,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
verbose=verbose,
|
verbose=verbose,
|
||||||
workers=0)
|
workers=0,
|
||||||
|
callbacks=callbacks)
|
||||||
elif distributed_training_utils.is_tpu_strategy(
|
elif distributed_training_utils.is_tpu_strategy(
|
||||||
self._distribution_strategy):
|
self._distribution_strategy):
|
||||||
return training_distributed.experimental_test_loop(
|
return training_distributed.experimental_test_loop(
|
||||||
@ -1015,13 +1020,15 @@ class Model(Network):
|
|||||||
sample_weights=sample_weights,
|
sample_weights=sample_weights,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
verbose=verbose,
|
verbose=verbose,
|
||||||
steps=steps)
|
steps=steps,
|
||||||
|
callbacks=callbacks)
|
||||||
|
|
||||||
def predict(self,
|
def predict(self,
|
||||||
x,
|
x,
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
verbose=0,
|
verbose=0,
|
||||||
steps=None,
|
steps=None,
|
||||||
|
callbacks=None,
|
||||||
max_queue_size=10,
|
max_queue_size=10,
|
||||||
workers=1,
|
workers=1,
|
||||||
use_multiprocessing=False):
|
use_multiprocessing=False):
|
||||||
@ -1048,6 +1055,9 @@ class Model(Network):
|
|||||||
steps: Total number of steps (batches of samples)
|
steps: Total number of steps (batches of samples)
|
||||||
before declaring the prediction round finished.
|
before declaring the prediction round finished.
|
||||||
Ignored with the default value of `None`.
|
Ignored with the default value of `None`.
|
||||||
|
callbacks: List of `keras.callbacks.Callback` instances.
|
||||||
|
List of callbacks to apply during prediction.
|
||||||
|
See [callbacks](/api_docs/python/tf/keras/callbacks).
|
||||||
max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
|
max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
|
||||||
input only. Maximum size for the generator queue.
|
input only. Maximum size for the generator queue.
|
||||||
If unspecified, `max_queue_size` will default to 10.
|
If unspecified, `max_queue_size` will default to 10.
|
||||||
@ -1110,14 +1120,20 @@ class Model(Network):
|
|||||||
steps=steps,
|
steps=steps,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
verbose=verbose,
|
verbose=verbose,
|
||||||
workers=0)
|
workers=0,
|
||||||
|
callbacks=callbacks)
|
||||||
elif distributed_training_utils.is_tpu_strategy(
|
elif distributed_training_utils.is_tpu_strategy(
|
||||||
self._distribution_strategy):
|
self._distribution_strategy):
|
||||||
return training_distributed.experimental_predict_loop(
|
return training_distributed.experimental_predict_loop(
|
||||||
self, x, verbose=verbose, steps=steps)
|
self, x, verbose=verbose, steps=steps)
|
||||||
else:
|
else:
|
||||||
return training_arrays.predict_loop(
|
return training_arrays.predict_loop(
|
||||||
self, x, batch_size=batch_size, verbose=verbose, steps=steps)
|
self,
|
||||||
|
x,
|
||||||
|
batch_size=batch_size,
|
||||||
|
verbose=verbose,
|
||||||
|
steps=steps,
|
||||||
|
callbacks=callbacks)
|
||||||
|
|
||||||
def reset_metrics(self):
|
def reset_metrics(self):
|
||||||
"""Resets the state of metrics."""
|
"""Resets the state of metrics."""
|
||||||
@ -1440,6 +1456,7 @@ class Model(Network):
|
|||||||
def evaluate_generator(self,
|
def evaluate_generator(self,
|
||||||
generator,
|
generator,
|
||||||
steps=None,
|
steps=None,
|
||||||
|
callbacks=None,
|
||||||
max_queue_size=10,
|
max_queue_size=10,
|
||||||
workers=1,
|
workers=1,
|
||||||
use_multiprocessing=False,
|
use_multiprocessing=False,
|
||||||
@ -1459,6 +1476,9 @@ class Model(Network):
|
|||||||
to yield from `generator` before stopping.
|
to yield from `generator` before stopping.
|
||||||
Optional for `Sequence`: if unspecified, will use
|
Optional for `Sequence`: if unspecified, will use
|
||||||
the `len(generator)` as a number of steps.
|
the `len(generator)` as a number of steps.
|
||||||
|
callbacks: List of `keras.callbacks.Callback` instances.
|
||||||
|
List of callbacks to apply during evaluation.
|
||||||
|
See [callbacks](/api_docs/python/tf/keras/callbacks).
|
||||||
max_queue_size: maximum size for the generator queue
|
max_queue_size: maximum size for the generator queue
|
||||||
workers: Integer. Maximum number of processes to spin up
|
workers: Integer. Maximum number of processes to spin up
|
||||||
when using process-based threading.
|
when using process-based threading.
|
||||||
@ -1494,11 +1514,13 @@ class Model(Network):
|
|||||||
max_queue_size=max_queue_size,
|
max_queue_size=max_queue_size,
|
||||||
workers=workers,
|
workers=workers,
|
||||||
use_multiprocessing=use_multiprocessing,
|
use_multiprocessing=use_multiprocessing,
|
||||||
verbose=verbose)
|
verbose=verbose,
|
||||||
|
callbacks=callbacks)
|
||||||
|
|
||||||
def predict_generator(self,
|
def predict_generator(self,
|
||||||
generator,
|
generator,
|
||||||
steps=None,
|
steps=None,
|
||||||
|
callbacks=None,
|
||||||
max_queue_size=10,
|
max_queue_size=10,
|
||||||
workers=1,
|
workers=1,
|
||||||
use_multiprocessing=False,
|
use_multiprocessing=False,
|
||||||
@ -1516,6 +1538,9 @@ class Model(Network):
|
|||||||
to yield from `generator` before stopping.
|
to yield from `generator` before stopping.
|
||||||
Optional for `Sequence`: if unspecified, will use
|
Optional for `Sequence`: if unspecified, will use
|
||||||
the `len(generator)` as a number of steps.
|
the `len(generator)` as a number of steps.
|
||||||
|
callbacks: List of `keras.callbacks.Callback` instances.
|
||||||
|
List of callbacks to apply during prediction.
|
||||||
|
See [callbacks](/api_docs/python/tf/keras/callbacks).
|
||||||
max_queue_size: Maximum size for the generator queue.
|
max_queue_size: Maximum size for the generator queue.
|
||||||
workers: Integer. Maximum number of processes to spin up
|
workers: Integer. Maximum number of processes to spin up
|
||||||
when using process-based threading.
|
when using process-based threading.
|
||||||
@ -1545,7 +1570,8 @@ class Model(Network):
|
|||||||
max_queue_size=max_queue_size,
|
max_queue_size=max_queue_size,
|
||||||
workers=workers,
|
workers=workers,
|
||||||
use_multiprocessing=use_multiprocessing,
|
use_multiprocessing=use_multiprocessing,
|
||||||
verbose=verbose)
|
verbose=verbose,
|
||||||
|
callbacks=callbacks)
|
||||||
|
|
||||||
def _get_callback_model(self):
|
def _get_callback_model(self):
|
||||||
"""Returns the Callback Model for this Model."""
|
"""Returns the Callback Model for this Model."""
|
||||||
|
@ -285,7 +285,7 @@ def model_iteration(model,
|
|||||||
aggregator.aggregate(batch_outs)
|
aggregator.aggregate(batch_outs)
|
||||||
|
|
||||||
# Callbacks batch end.
|
# Callbacks batch end.
|
||||||
batch_logs.update(training_utils.make_logs(model, batch_outs, mode))
|
batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
|
||||||
callbacks._call_batch_hook(mode, 'end', step, batch_logs)
|
callbacks._call_batch_hook(mode, 'end', step, batch_logs)
|
||||||
progbar.on_batch_end(step, batch_logs)
|
progbar.on_batch_end(step, batch_logs)
|
||||||
|
|
||||||
@ -336,7 +336,7 @@ def model_iteration(model,
|
|||||||
aggregator.aggregate(batch_outs, batch_start, batch_end)
|
aggregator.aggregate(batch_outs, batch_start, batch_end)
|
||||||
|
|
||||||
# Callbacks batch end.
|
# Callbacks batch end.
|
||||||
batch_logs.update(training_utils.make_logs(model, batch_outs, mode))
|
batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
|
||||||
callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs)
|
callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs)
|
||||||
progbar.on_batch_end(batch_index, batch_logs)
|
progbar.on_batch_end(batch_index, batch_logs)
|
||||||
|
|
||||||
@ -345,7 +345,7 @@ def model_iteration(model,
|
|||||||
|
|
||||||
aggregator.finalize()
|
aggregator.finalize()
|
||||||
results = aggregator.results
|
results = aggregator.results
|
||||||
epoch_logs.update(training_utils.make_logs(model, results, mode))
|
epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
|
||||||
if len(results) == 1:
|
if len(results) == 1:
|
||||||
results = results[0]
|
results = results[0]
|
||||||
|
|
||||||
@ -364,11 +364,14 @@ def model_iteration(model,
|
|||||||
validation_in_fit=True)
|
validation_in_fit=True)
|
||||||
if not isinstance(val_results, list):
|
if not isinstance(val_results, list):
|
||||||
val_results = [val_results]
|
val_results = [val_results]
|
||||||
epoch_logs.update(
|
epoch_logs = cbks.make_logs(
|
||||||
training_utils.make_logs(model, val_results, mode, prefix='val_'))
|
model, epoch_logs, val_results, mode, prefix='val_')
|
||||||
|
|
||||||
|
if mode == 'train':
|
||||||
|
# Epochs only apply to `fit`.
|
||||||
|
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
|
||||||
|
progbar.on_epoch_end(epoch, epoch_logs)
|
||||||
|
|
||||||
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
|
|
||||||
progbar.on_epoch_end(epoch, epoch_logs)
|
|
||||||
callbacks._call_end_hook(mode)
|
callbacks._call_end_hook(mode)
|
||||||
|
|
||||||
if model._distribution_strategy:
|
if model._distribution_strategy:
|
||||||
|
@ -198,7 +198,7 @@ def model_iteration(model,
|
|||||||
aggregator.aggregate(batch_outs)
|
aggregator.aggregate(batch_outs)
|
||||||
|
|
||||||
# Callbacks batch end.
|
# Callbacks batch end.
|
||||||
batch_logs.update(training_utils.make_logs(model, batch_outs, mode))
|
batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
|
||||||
callbacks._call_batch_hook(mode, 'end', step, batch_logs)
|
callbacks._call_batch_hook(mode, 'end', step, batch_logs)
|
||||||
progbar.on_batch_end(step, batch_logs)
|
progbar.on_batch_end(step, batch_logs)
|
||||||
|
|
||||||
@ -207,7 +207,7 @@ def model_iteration(model,
|
|||||||
|
|
||||||
aggregator.finalize()
|
aggregator.finalize()
|
||||||
results = aggregator.results
|
results = aggregator.results
|
||||||
epoch_logs.update(training_utils.make_logs(model, results, mode))
|
epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
|
||||||
if len(results) == 1:
|
if len(results) == 1:
|
||||||
results = results[0]
|
results = results[0]
|
||||||
|
|
||||||
@ -222,15 +222,20 @@ def model_iteration(model,
|
|||||||
workers=workers,
|
workers=workers,
|
||||||
use_multiprocessing=use_multiprocessing,
|
use_multiprocessing=use_multiprocessing,
|
||||||
max_queue_size=max_queue_size,
|
max_queue_size=max_queue_size,
|
||||||
|
callbacks=callbacks,
|
||||||
|
verbose=0,
|
||||||
mode='test')
|
mode='test')
|
||||||
|
|
||||||
if not isinstance(val_results, list):
|
if not isinstance(val_results, list):
|
||||||
val_results = [val_results]
|
val_results = [val_results]
|
||||||
epoch_logs.update(
|
epoch_logs = cbks.make_logs(
|
||||||
training_utils.make_logs(model, val_results, mode, prefix='val_'))
|
model, epoch_logs, val_results, mode, prefix='val_')
|
||||||
|
|
||||||
|
if mode == 'train':
|
||||||
|
# Epochs only apply to `fit`.
|
||||||
|
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
|
||||||
|
progbar.on_epoch_end(epoch, epoch_logs)
|
||||||
|
|
||||||
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
|
|
||||||
progbar.on_epoch_end(epoch, epoch_logs)
|
|
||||||
callbacks._call_end_hook(mode)
|
callbacks._call_end_hook(mode)
|
||||||
|
|
||||||
if enqueuer is not None:
|
if enqueuer is not None:
|
||||||
|
@ -136,18 +136,6 @@ class OutputsAggregator(Aggregator):
|
|||||||
self.results = [np.concatenate(result, axis=0) for result in self.results]
|
self.results = [np.concatenate(result, axis=0) for result in self.results]
|
||||||
|
|
||||||
|
|
||||||
def make_logs(model, outputs, mode, prefix=''):
|
|
||||||
"""Computes logs for sending to `on_batch_end` methods."""
|
|
||||||
logs = {}
|
|
||||||
# TODO(omalleyt): handle outputs in prediction when Callback
|
|
||||||
# hooks are ready.
|
|
||||||
if mode in ['train', 'test']:
|
|
||||||
if hasattr(model, 'metrics_names'):
|
|
||||||
for label, output in zip(model.metrics_names, outputs):
|
|
||||||
logs[prefix + label] = output
|
|
||||||
return logs
|
|
||||||
|
|
||||||
|
|
||||||
def get_progbar(model, count_mode):
|
def get_progbar(model, count_mode):
|
||||||
"""Get Progbar."""
|
"""Get Progbar."""
|
||||||
stateful_metric_names = None
|
stateful_metric_names = None
|
||||||
|
@ -167,11 +167,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -235,11 +235,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
@ -172,11 +172,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -244,7 +244,7 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_classes"
|
name: "predict_classes"
|
||||||
@ -252,7 +252,7 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
@ -23,6 +23,38 @@ tf_class {
|
|||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,12 +17,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -16,11 +16,43 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
|
@ -21,12 +21,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,12 +17,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,11 +17,43 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
|
@ -23,6 +23,38 @@ tf_class {
|
|||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,12 +17,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -23,6 +23,38 @@ tf_class {
|
|||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -21,12 +21,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,12 +17,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -23,6 +23,38 @@ tf_class {
|
|||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,11 +17,43 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
|
@ -167,11 +167,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -235,11 +235,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
@ -172,11 +172,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -244,7 +244,7 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_classes"
|
name: "predict_classes"
|
||||||
@ -252,7 +252,7 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
@ -167,11 +167,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -235,11 +235,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
@ -172,11 +172,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -244,7 +244,7 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_classes"
|
name: "predict_classes"
|
||||||
@ -252,7 +252,7 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
@ -23,6 +23,38 @@ tf_class {
|
|||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,12 +17,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -16,11 +16,43 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
|
@ -21,12 +21,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,12 +17,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,11 +17,43 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
|
@ -23,6 +23,38 @@ tf_class {
|
|||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,12 +17,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -23,6 +23,38 @@ tf_class {
|
|||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -21,12 +21,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,12 +17,44 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -23,6 +23,38 @@ tf_class {
|
|||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
@ -17,11 +17,43 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_begin"
|
name: "on_epoch_begin"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_epoch_end"
|
name: "on_epoch_end"
|
||||||
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_predict_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_begin"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_batch_end"
|
||||||
|
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_begin"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "on_test_end"
|
||||||
|
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "on_train_batch_begin"
|
name: "on_train_batch_begin"
|
||||||
|
@ -172,11 +172,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -240,11 +240,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
@ -167,11 +167,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -235,11 +235,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
@ -172,11 +172,11 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate"
|
name: "evaluate"
|
||||||
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "evaluate_generator"
|
name: "evaluate_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "fit"
|
name: "fit"
|
||||||
@ -244,7 +244,7 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict"
|
name: "predict"
|
||||||
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
|
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_classes"
|
name: "predict_classes"
|
||||||
@ -252,7 +252,7 @@ tf_class {
|
|||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_generator"
|
name: "predict_generator"
|
||||||
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
|
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
|
||||||
}
|
}
|
||||||
member_method {
|
member_method {
|
||||||
name: "predict_on_batch"
|
name: "predict_on_batch"
|
||||||
|
Loading…
Reference in New Issue
Block a user