Add Callbacks hooks for evaluate and predict.

Adds Callback methods that can be used during validation, evaluation, and
prediction.

PiperOrigin-RevId: 225611013
This commit is contained in:
A. Unique TensorFlower 2018-12-14 15:07:08 -08:00 committed by TensorFlower Gardener
parent 62e61f434b
commit abe1c5f6c0
41 changed files with 1365 additions and 136 deletions

View File

@ -45,13 +45,17 @@ from tensorflow.python.summary import summary as tf_summary
from tensorflow.python.training import saver from tensorflow.python.training import saver
from tensorflow.python.util.tf_export import tf_export from tensorflow.python.util.tf_export import tf_export
try: try:
import requests import requests
except ImportError: except ImportError:
requests = None requests = None
_TRAIN = 'train'
_TEST = 'test'
_PREDICT = 'predict'
# pylint: disable=protected-access # pylint: disable=protected-access
def configure_callbacks(callbacks, def configure_callbacks(callbacks,
model, model,
@ -62,7 +66,7 @@ def configure_callbacks(callbacks,
samples=None, samples=None,
verbose=1, verbose=1,
count_mode='steps', count_mode='steps',
mode='train'): mode=_TRAIN):
"""Configures callbacks for use in various training loops. """Configures callbacks for use in various training loops.
Arguments: Arguments:
@ -89,7 +93,7 @@ def configure_callbacks(callbacks,
callbacks = [] callbacks = []
# Add additional callbacks during training. # Add additional callbacks during training.
if mode == 'train': if mode == _TRAIN:
model.history = History() model.history = History()
stateful_metric_names = None stateful_metric_names = None
if hasattr(model, 'metrics_names'): if hasattr(model, 'metrics_names'):
@ -109,7 +113,7 @@ def configure_callbacks(callbacks,
callback_metrics = [] callback_metrics = []
# When we have deferred build scenario with iterator input, we will compile # When we have deferred build scenario with iterator input, we will compile
# when we standardize first batch of data. # when we standardize first batch of data.
if mode != 'predict' and hasattr(model, 'metrics_names'): if mode != _PREDICT and hasattr(model, 'metrics_names'):
callback_metrics = copy.copy(model.metrics_names) callback_metrics = copy.copy(model.metrics_names)
if do_validation: if do_validation:
callback_metrics += ['val_' + n for n in model.metrics_names] callback_metrics += ['val_' + n for n in model.metrics_names]
@ -142,6 +146,17 @@ def _is_generator_like(data):
data, (Sequence, iterator_ops.Iterator, iterator_ops.EagerIterator))) data, (Sequence, iterator_ops.Iterator, iterator_ops.EagerIterator)))
def make_logs(model, logs, outputs, mode, prefix=''):
"""Computes logs for sending to `on_batch_end` methods."""
if mode in {_TRAIN, _TEST}:
if hasattr(model, 'metrics_names'):
for label, output in zip(model.metrics_names, outputs):
logs[prefix + label] = output
else:
logs['outputs'] = outputs
return logs
class CallbackList(object): class CallbackList(object):
"""Container abstracting a list of callbacks. """Container abstracting a list of callbacks.
@ -179,10 +194,6 @@ class CallbackList(object):
def _call_batch_hook(self, mode, hook, batch, logs=None): def _call_batch_hook(self, mode, hook, batch, logs=None):
"""Helper function for all batch_{begin | end} methods.""" """Helper function for all batch_{begin | end} methods."""
# TODO(omalleyt): add batch hooks for test/predict.
if mode != 'train':
return
hook_name = 'on_{mode}_batch_{hook}'.format(mode=mode, hook=hook) hook_name = 'on_{mode}_batch_{hook}'.format(mode=mode, hook=hook)
if hook == 'begin': if hook == 'begin':
self._t_enter_batch = time.time() self._t_enter_batch = time.time()
@ -207,87 +218,175 @@ class CallbackList(object):
def _call_begin_hook(self, mode): def _call_begin_hook(self, mode):
"""Helper function for on_{train|test|predict}_begin methods.""" """Helper function for on_{train|test|predict}_begin methods."""
# TODO(omalleyt): add test/predict methods. if mode == _TRAIN:
if mode == 'train':
self.on_train_begin() self.on_train_begin()
elif mode == _TEST:
self.on_test_begin()
else:
self.on_predict_begin()
def _call_end_hook(self, mode): def _call_end_hook(self, mode):
"""Helper function for on_{train|test|predict}_end methods.""" """Helper function for on_{train|test|predict}_end methods."""
# TODO(omalleyt): add test/predict methods. if mode == _TRAIN:
if mode == 'train':
self.on_train_end() self.on_train_end()
elif mode == _TEST:
self.on_test_end()
else:
self.on_predict_end()
def on_batch_begin(self, batch, logs=None): def on_batch_begin(self, batch, logs=None):
self._call_batch_hook('train', 'begin', batch, logs=logs) self._call_batch_hook(_TRAIN, 'begin', batch, logs=logs)
def on_batch_end(self, batch, logs=None): def on_batch_end(self, batch, logs=None):
self._call_batch_hook('train', 'end', batch, logs=logs) self._call_batch_hook(_TRAIN, 'end', batch, logs=logs)
def on_epoch_begin(self, epoch, logs=None, mode='train'): def on_epoch_begin(self, epoch, logs=None, mode='train'):
"""Called at the start of an epoch. """Calls the `on_epoch_begin` methods of its callbacks.
Arguments: Arguments:
epoch: integer, index of epoch. epoch: integer, index of epoch.
logs: dictionary of logs. logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
mode: One of 'train'/'test'/'predict' mode: One of 'train'/'test'/'predict'
""" """
if mode == 'train': if mode == _TRAIN:
logs = logs or {} logs = logs or {}
for callback in self.callbacks: for callback in self.callbacks:
callback.on_epoch_begin(epoch, logs) callback.on_epoch_begin(epoch, logs)
self._reset_batch_timing() self._reset_batch_timing()
def on_epoch_end(self, epoch, logs=None, mode='train'): def on_epoch_end(self, epoch, logs=None, mode='train'):
"""Called at the end of an epoch. """Calls the `on_epoch_end` methods of its callbacks.
Arguments: Arguments:
epoch: integer, index of epoch. epoch: integer, index of epoch.
logs: dictionary of logs. logs: dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys
are prefixed with `val_`.
mode: One of 'train'/'test'/'predict' mode: One of 'train'/'test'/'predict'
""" """
if mode == 'train': if mode == _TRAIN:
logs = logs or {} logs = logs or {}
for callback in self.callbacks: for callback in self.callbacks:
callback.on_epoch_end(epoch, logs) callback.on_epoch_end(epoch, logs)
def on_train_batch_begin(self, batch, logs=None): def on_train_batch_begin(self, batch, logs=None):
"""Called at the beginning of a training batch in `fit` methods. """Calls the `on_train_batch_begin` methods of its callbacks.
Arguments: Arguments:
batch: integer, index of batch within the current epoch. batch: integer, index of batch within the current epoch.
logs: dictionary of logs. logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
""" """
self._call_batch_hook('train', 'begin', batch, logs=logs) self._call_batch_hook(_TRAIN, 'begin', batch, logs=logs)
def on_train_batch_end(self, batch, logs=None): def on_train_batch_end(self, batch, logs=None):
"""Called at the end of a training batch in `fit` methods. """Calls the `on_train_batch_end` methods of its callbacks.
Arguments: Arguments:
batch: integer, index of batch within the current epoch. batch: integer, index of batch within the current epoch.
logs: dictionary of logs. logs: dict. Metric results for this batch.
""" """
self._call_batch_hook('train', 'end', batch, logs=logs) self._call_batch_hook(_TRAIN, 'end', batch, logs=logs)
def on_train_begin(self, logs=None): def on_test_batch_begin(self, batch, logs=None):
"""Called at the beginning of training. """Calls the `on_test_batch_begin` methods of its callbacks.
Arguments: Arguments:
logs: dictionary of logs. batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
self._call_batch_hook(_TEST, 'begin', batch, logs=logs)
def on_test_batch_end(self, batch, logs=None):
"""Calls the `on_test_batch_end` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
self._call_batch_hook(_TEST, 'end', batch, logs=logs)
def on_predict_batch_begin(self, batch, logs=None):
"""Calls the `on_predict_batch_begin` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
self._call_batch_hook(_PREDICT, 'begin', batch, logs=logs)
def on_predict_batch_end(self, batch, logs=None):
"""Calls the `on_predict_batch_end` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
self._call_batch_hook(_PREDICT, 'end', batch, logs=logs)
def on_train_begin(self, logs=None):
"""Calls the `on_train_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
""" """
logs = logs or {}
for callback in self.callbacks: for callback in self.callbacks:
callback.on_train_begin(logs) callback.on_train_begin(logs)
def on_train_end(self, logs=None): def on_train_end(self, logs=None):
"""Called at the end of training. """Calls the `on_train_end` methods of its callbacks.
Arguments: Arguments:
logs: dictionary of logs. logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
""" """
logs = logs or {}
for callback in self.callbacks: for callback in self.callbacks:
callback.on_train_end(logs) callback.on_train_end(logs)
def on_test_begin(self, logs=None):
"""Calls the `on_test_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_test_begin(logs)
def on_test_end(self, logs=None):
"""Calls the `on_test_end` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_test_end(logs)
def on_predict_begin(self, logs=None):
"""Calls the 'on_predict_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_predict_begin(logs)
def on_predict_end(self, logs=None):
"""Calls the `on_predict_end` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_predict_end(logs)
def __iter__(self): def __iter__(self):
return iter(self.callbacks) return iter(self.callbacks)
@ -330,31 +429,169 @@ class Callback(object):
def set_model(self, model): def set_model(self, model):
self.model = model self.model = model
def on_epoch_begin(self, epoch, logs=None):
pass
def on_epoch_end(self, epoch, logs=None):
pass
def on_batch_begin(self, batch, logs=None): def on_batch_begin(self, batch, logs=None):
pass """A backwards compatibility alias for `on_train_batch_begin`."""
def on_batch_end(self, batch, logs=None): def on_batch_end(self, batch, logs=None):
pass """A backwards compatibility alias for `on_train_batch_end`."""
def on_epoch_begin(self, epoch, logs=None, mode='train'):
"""Called at the start of an epoch.
Subclasses should override for any actions to run.
Arguments:
epoch: integer, index of epoch.
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
mode: One of 'train'/'test'/'predict'
"""
def on_epoch_end(self, epoch, logs=None, mode='train'):
"""Called at the end of an epoch.
Subclasses should override for any actions to run.
Arguments:
epoch: integer, index of epoch.
logs: dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys
are prefixed with `val_`.
mode: One of 'train'/'test'/'predict'
"""
def on_train_batch_begin(self, batch, logs=None): def on_train_batch_begin(self, batch, logs=None):
# For backwards compatibility """Called at the beginning of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
# For backwards compatibility.
self.on_batch_begin(batch, logs=logs) self.on_batch_begin(batch, logs=logs)
def on_train_batch_end(self, batch, logs=None): def on_train_batch_end(self, batch, logs=None):
# For backwards compatibility """Called at the end of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
# For backwards compatibility.
self.on_batch_end(batch, logs=logs) self.on_batch_end(batch, logs=logs)
def on_test_batch_begin(self, batch, logs=None):
"""Called at the beginning of a batch in `evaluate` methods.
Also called at the beginning of a validation batch in the `fit`
methods, if validation data is provided.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
def on_test_batch_end(self, batch, logs=None):
"""Called at the end of a batch in `evaluate` methods.
Also called at the end of a validation batch in the `fit`
methods, if validation data is provided.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
def on_predict_batch_begin(self, batch, logs=None):
"""Called at the beginning of a batch in `predict` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
def on_predict_batch_end(self, batch, logs=None):
"""Called at the end of a batch in `predict` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
def on_train_begin(self, logs=None): def on_train_begin(self, logs=None):
pass """Called at the beginning of training.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_train_end(self, logs=None): def on_train_end(self, logs=None):
pass """Called at the end of training.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_test_begin(self, logs=None):
"""Called at the beginning of evaluation or validation.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_test_end(self, logs=None):
"""Called at the end of evaluation or validation.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_predict_begin(self, logs=None):
"""Called at the beginning of prediction.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_predict_end(self, logs=None):
"""Called at the end of prediction.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
@tf_export('keras.callbacks.BaseLogger') @tf_export('keras.callbacks.BaseLogger')

View File

@ -18,6 +18,7 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import collections
import csv import csv
import os import os
import re import re
@ -33,6 +34,7 @@ from tensorflow.python import keras
from tensorflow.python.framework import ops from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed from tensorflow.python.framework import random_seed
from tensorflow.python.framework import test_util from tensorflow.python.framework import test_util
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils from tensorflow.python.keras import testing_utils
from tensorflow.python.platform import test from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging as logging from tensorflow.python.platform import tf_logging as logging
@ -57,6 +59,142 @@ NUM_HIDDEN = 5
BATCH_SIZE = 5 BATCH_SIZE = 5
class Counter(keras.callbacks.Callback):
"""Counts the number of times each callback method was run.
Attributes:
method_counts: dict. Contains the counts of time each callback method was
run.
"""
def __init__(self):
self.method_counts = collections.defaultdict(int)
methods_to_count = [
'on_batch_begin', 'on_batch_end', 'on_epoch_begin', 'on_epoch_end',
'on_predict_batch_begin', 'on_predict_batch_end', 'on_predict_begin',
'on_predict_end', 'on_test_batch_begin', 'on_test_batch_end',
'on_test_begin', 'on_test_end', 'on_train_batch_begin',
'on_train_batch_end', 'on_train_begin', 'on_train_end'
]
for method_name in methods_to_count:
setattr(self, method_name,
self.wrap_with_counts(method_name, getattr(self, method_name)))
def wrap_with_counts(self, method_name, method):
def _call_and_count(*args, **kwargs):
self.method_counts[method_name] += 1
return method(*args, **kwargs)
return _call_and_count
@keras_parameterized.run_with_all_model_types
@keras_parameterized.run_all_keras_modes
class CallbackCountsTest(keras_parameterized.TestCase):
def _check_counts(self, counter, expected_counts):
"""Checks that the counts registered by `counter` are those expected."""
for method_name, expected_count in expected_counts.items():
self.assertEqual(
counter.method_counts[method_name],
expected_count,
msg='For method {}: expected {}, got: {}'.format(
method_name, expected_count, counter.method_counts[method_name]))
def _get_model(self):
layers = [
keras.layers.Dense(10, activation='relu'),
keras.layers.Dense(1, activation='sigmoid')
]
model = testing_utils.get_model_from_layers(layers, input_shape=(10,))
model.compile(
adam.AdamOptimizer(0.001),
'binary_crossentropy',
run_eagerly=testing_utils.should_run_eagerly())
return model
def test_callback_hooks_are_called_in_fit(self):
x, y = np.ones((10, 10)), np.ones((10, 1))
val_x, val_y = np.ones((4, 10)), np.ones((4, 1))
model = self._get_model()
counter = Counter()
model.fit(
x,
y,
validation_data=(val_x, val_y),
batch_size=2,
epochs=5,
callbacks=[counter])
self._check_counts(
counter, {
'on_batch_begin': 25,
'on_batch_end': 25,
'on_epoch_begin': 5,
'on_epoch_end': 5,
'on_predict_batch_begin': 0,
'on_predict_batch_end': 0,
'on_predict_begin': 0,
'on_predict_end': 0,
'on_test_batch_begin': 10,
'on_test_batch_end': 10,
'on_test_begin': 5,
'on_test_end': 5,
'on_train_batch_begin': 25,
'on_train_batch_end': 25,
'on_train_begin': 1,
'on_train_end': 1
})
def test_callback_hooks_are_called_in_evaluate(self):
x, y = np.ones((10, 10)), np.ones((10, 1))
model = self._get_model()
counter = Counter()
model.evaluate(x, y, batch_size=2, callbacks=[counter])
self._check_counts(
counter, {
'on_test_batch_begin': 5,
'on_test_batch_end': 5,
'on_test_begin': 1,
'on_test_end': 1
})
def test_callback_hooks_are_called_in_predict(self):
x = np.ones((10, 10))
model = self._get_model()
counter = Counter()
model.predict(x, batch_size=2, callbacks=[counter])
self._check_counts(
counter, {
'on_predict_batch_begin': 5,
'on_predict_batch_end': 5,
'on_predict_begin': 1,
'on_predict_end': 1
})
def test_callback_list_methods(self):
counter = Counter()
callback_list = keras.callbacks.CallbackList([counter])
batch = 0
callback_list.on_test_batch_begin(batch)
callback_list.on_test_batch_end(batch)
callback_list.on_predict_batch_begin(batch)
callback_list.on_predict_batch_end(batch)
self._check_counts(
counter, {
'on_test_batch_begin': 1,
'on_test_batch_end': 1,
'on_predict_batch_begin': 1,
'on_predict_batch_end': 1
})
class KerasCallbacksTest(test.TestCase): class KerasCallbacksTest(test.TestCase):
def test_ModelCheckpoint(self): def test_ModelCheckpoint(self):

View File

@ -893,6 +893,7 @@ class Model(Network):
verbose=1, verbose=1,
sample_weight=None, sample_weight=None,
steps=None, steps=None,
callbacks=None,
max_queue_size=10, max_queue_size=10,
workers=1, workers=1,
use_multiprocessing=False): use_multiprocessing=False):
@ -943,6 +944,9 @@ class Model(Network):
Total number of steps (batches of samples) Total number of steps (batches of samples)
before declaring the evaluation round finished. before declaring the evaluation round finished.
Ignored with the default value of `None`. Ignored with the default value of `None`.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during evaluation.
See [callbacks](/api_docs/python/tf/keras/callbacks).
max_queue_size: Integer. Used for generator or `keras.utils.Sequence` max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
input only. Maximum size for the generator queue. input only. Maximum size for the generator queue.
If unspecified, `max_queue_size` will default to 10. If unspecified, `max_queue_size` will default to 10.
@ -1002,7 +1006,8 @@ class Model(Network):
steps=steps, steps=steps,
batch_size=batch_size, batch_size=batch_size,
verbose=verbose, verbose=verbose,
workers=0) workers=0,
callbacks=callbacks)
elif distributed_training_utils.is_tpu_strategy( elif distributed_training_utils.is_tpu_strategy(
self._distribution_strategy): self._distribution_strategy):
return training_distributed.experimental_test_loop( return training_distributed.experimental_test_loop(
@ -1015,13 +1020,15 @@ class Model(Network):
sample_weights=sample_weights, sample_weights=sample_weights,
batch_size=batch_size, batch_size=batch_size,
verbose=verbose, verbose=verbose,
steps=steps) steps=steps,
callbacks=callbacks)
def predict(self, def predict(self,
x, x,
batch_size=None, batch_size=None,
verbose=0, verbose=0,
steps=None, steps=None,
callbacks=None,
max_queue_size=10, max_queue_size=10,
workers=1, workers=1,
use_multiprocessing=False): use_multiprocessing=False):
@ -1048,6 +1055,9 @@ class Model(Network):
steps: Total number of steps (batches of samples) steps: Total number of steps (batches of samples)
before declaring the prediction round finished. before declaring the prediction round finished.
Ignored with the default value of `None`. Ignored with the default value of `None`.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during prediction.
See [callbacks](/api_docs/python/tf/keras/callbacks).
max_queue_size: Integer. Used for generator or `keras.utils.Sequence` max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
input only. Maximum size for the generator queue. input only. Maximum size for the generator queue.
If unspecified, `max_queue_size` will default to 10. If unspecified, `max_queue_size` will default to 10.
@ -1110,14 +1120,20 @@ class Model(Network):
steps=steps, steps=steps,
batch_size=batch_size, batch_size=batch_size,
verbose=verbose, verbose=verbose,
workers=0) workers=0,
callbacks=callbacks)
elif distributed_training_utils.is_tpu_strategy( elif distributed_training_utils.is_tpu_strategy(
self._distribution_strategy): self._distribution_strategy):
return training_distributed.experimental_predict_loop( return training_distributed.experimental_predict_loop(
self, x, verbose=verbose, steps=steps) self, x, verbose=verbose, steps=steps)
else: else:
return training_arrays.predict_loop( return training_arrays.predict_loop(
self, x, batch_size=batch_size, verbose=verbose, steps=steps) self,
x,
batch_size=batch_size,
verbose=verbose,
steps=steps,
callbacks=callbacks)
def reset_metrics(self): def reset_metrics(self):
"""Resets the state of metrics.""" """Resets the state of metrics."""
@ -1440,6 +1456,7 @@ class Model(Network):
def evaluate_generator(self, def evaluate_generator(self,
generator, generator,
steps=None, steps=None,
callbacks=None,
max_queue_size=10, max_queue_size=10,
workers=1, workers=1,
use_multiprocessing=False, use_multiprocessing=False,
@ -1459,6 +1476,9 @@ class Model(Network):
to yield from `generator` before stopping. to yield from `generator` before stopping.
Optional for `Sequence`: if unspecified, will use Optional for `Sequence`: if unspecified, will use
the `len(generator)` as a number of steps. the `len(generator)` as a number of steps.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during evaluation.
See [callbacks](/api_docs/python/tf/keras/callbacks).
max_queue_size: maximum size for the generator queue max_queue_size: maximum size for the generator queue
workers: Integer. Maximum number of processes to spin up workers: Integer. Maximum number of processes to spin up
when using process-based threading. when using process-based threading.
@ -1494,11 +1514,13 @@ class Model(Network):
max_queue_size=max_queue_size, max_queue_size=max_queue_size,
workers=workers, workers=workers,
use_multiprocessing=use_multiprocessing, use_multiprocessing=use_multiprocessing,
verbose=verbose) verbose=verbose,
callbacks=callbacks)
def predict_generator(self, def predict_generator(self,
generator, generator,
steps=None, steps=None,
callbacks=None,
max_queue_size=10, max_queue_size=10,
workers=1, workers=1,
use_multiprocessing=False, use_multiprocessing=False,
@ -1516,6 +1538,9 @@ class Model(Network):
to yield from `generator` before stopping. to yield from `generator` before stopping.
Optional for `Sequence`: if unspecified, will use Optional for `Sequence`: if unspecified, will use
the `len(generator)` as a number of steps. the `len(generator)` as a number of steps.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during prediction.
See [callbacks](/api_docs/python/tf/keras/callbacks).
max_queue_size: Maximum size for the generator queue. max_queue_size: Maximum size for the generator queue.
workers: Integer. Maximum number of processes to spin up workers: Integer. Maximum number of processes to spin up
when using process-based threading. when using process-based threading.
@ -1545,7 +1570,8 @@ class Model(Network):
max_queue_size=max_queue_size, max_queue_size=max_queue_size,
workers=workers, workers=workers,
use_multiprocessing=use_multiprocessing, use_multiprocessing=use_multiprocessing,
verbose=verbose) verbose=verbose,
callbacks=callbacks)
def _get_callback_model(self): def _get_callback_model(self):
"""Returns the Callback Model for this Model.""" """Returns the Callback Model for this Model."""

View File

@ -285,7 +285,7 @@ def model_iteration(model,
aggregator.aggregate(batch_outs) aggregator.aggregate(batch_outs)
# Callbacks batch end. # Callbacks batch end.
batch_logs.update(training_utils.make_logs(model, batch_outs, mode)) batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
callbacks._call_batch_hook(mode, 'end', step, batch_logs) callbacks._call_batch_hook(mode, 'end', step, batch_logs)
progbar.on_batch_end(step, batch_logs) progbar.on_batch_end(step, batch_logs)
@ -336,7 +336,7 @@ def model_iteration(model,
aggregator.aggregate(batch_outs, batch_start, batch_end) aggregator.aggregate(batch_outs, batch_start, batch_end)
# Callbacks batch end. # Callbacks batch end.
batch_logs.update(training_utils.make_logs(model, batch_outs, mode)) batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs) callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs)
progbar.on_batch_end(batch_index, batch_logs) progbar.on_batch_end(batch_index, batch_logs)
@ -345,7 +345,7 @@ def model_iteration(model,
aggregator.finalize() aggregator.finalize()
results = aggregator.results results = aggregator.results
epoch_logs.update(training_utils.make_logs(model, results, mode)) epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
if len(results) == 1: if len(results) == 1:
results = results[0] results = results[0]
@ -364,11 +364,14 @@ def model_iteration(model,
validation_in_fit=True) validation_in_fit=True)
if not isinstance(val_results, list): if not isinstance(val_results, list):
val_results = [val_results] val_results = [val_results]
epoch_logs.update( epoch_logs = cbks.make_logs(
training_utils.make_logs(model, val_results, mode, prefix='val_')) model, epoch_logs, val_results, mode, prefix='val_')
if mode == 'train':
# Epochs only apply to `fit`.
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
progbar.on_epoch_end(epoch, epoch_logs)
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
progbar.on_epoch_end(epoch, epoch_logs)
callbacks._call_end_hook(mode) callbacks._call_end_hook(mode)
if model._distribution_strategy: if model._distribution_strategy:

View File

@ -198,7 +198,7 @@ def model_iteration(model,
aggregator.aggregate(batch_outs) aggregator.aggregate(batch_outs)
# Callbacks batch end. # Callbacks batch end.
batch_logs.update(training_utils.make_logs(model, batch_outs, mode)) batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
callbacks._call_batch_hook(mode, 'end', step, batch_logs) callbacks._call_batch_hook(mode, 'end', step, batch_logs)
progbar.on_batch_end(step, batch_logs) progbar.on_batch_end(step, batch_logs)
@ -207,7 +207,7 @@ def model_iteration(model,
aggregator.finalize() aggregator.finalize()
results = aggregator.results results = aggregator.results
epoch_logs.update(training_utils.make_logs(model, results, mode)) epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
if len(results) == 1: if len(results) == 1:
results = results[0] results = results[0]
@ -222,15 +222,20 @@ def model_iteration(model,
workers=workers, workers=workers,
use_multiprocessing=use_multiprocessing, use_multiprocessing=use_multiprocessing,
max_queue_size=max_queue_size, max_queue_size=max_queue_size,
callbacks=callbacks,
verbose=0,
mode='test') mode='test')
if not isinstance(val_results, list): if not isinstance(val_results, list):
val_results = [val_results] val_results = [val_results]
epoch_logs.update( epoch_logs = cbks.make_logs(
training_utils.make_logs(model, val_results, mode, prefix='val_')) model, epoch_logs, val_results, mode, prefix='val_')
if mode == 'train':
# Epochs only apply to `fit`.
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
progbar.on_epoch_end(epoch, epoch_logs)
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
progbar.on_epoch_end(epoch, epoch_logs)
callbacks._call_end_hook(mode) callbacks._call_end_hook(mode)
if enqueuer is not None: if enqueuer is not None:

View File

@ -136,18 +136,6 @@ class OutputsAggregator(Aggregator):
self.results = [np.concatenate(result, axis=0) for result in self.results] self.results = [np.concatenate(result, axis=0) for result in self.results]
def make_logs(model, outputs, mode, prefix=''):
"""Computes logs for sending to `on_batch_end` methods."""
logs = {}
# TODO(omalleyt): handle outputs in prediction when Callback
# hooks are ready.
if mode in ['train', 'test']:
if hasattr(model, 'metrics_names'):
for label, output in zip(model.metrics_names, outputs):
logs[prefix + label] = output
return logs
def get_progbar(model, count_mode): def get_progbar(model, count_mode):
"""Get Progbar.""" """Get Progbar."""
stateful_metric_names = None stateful_metric_names = None

View File

@ -167,11 +167,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -235,11 +235,11 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"

View File

@ -172,11 +172,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -244,7 +244,7 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_classes" name: "predict_classes"
@ -252,7 +252,7 @@ tf_class {
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -16,11 +16,43 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"

View File

@ -21,12 +21,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,11 +17,43 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -21,12 +21,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,11 +17,43 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"

View File

@ -167,11 +167,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -235,11 +235,11 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"

View File

@ -172,11 +172,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -244,7 +244,7 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_classes" name: "predict_classes"
@ -252,7 +252,7 @@ tf_class {
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"

View File

@ -167,11 +167,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -235,11 +235,11 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"

View File

@ -172,11 +172,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -244,7 +244,7 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_classes" name: "predict_classes"
@ -252,7 +252,7 @@ tf_class {
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -16,11 +16,43 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"

View File

@ -21,12 +21,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,11 +17,43 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -21,12 +21,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,11 +17,43 @@ tf_class {
} }
member_method { member_method {
name: "on_epoch_begin" name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
} }
member_method { member_method {
name: "on_epoch_end" name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
} }
member_method { member_method {
name: "on_train_batch_begin" name: "on_train_batch_begin"

View File

@ -172,11 +172,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -240,11 +240,11 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"

View File

@ -167,11 +167,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -235,11 +235,11 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"

View File

@ -172,11 +172,11 @@ tf_class {
} }
member_method { member_method {
name: "evaluate" name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "evaluate_generator" name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "fit" name: "fit"
@ -244,7 +244,7 @@ tf_class {
} }
member_method { member_method {
name: "predict" name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], " argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
} }
member_method { member_method {
name: "predict_classes" name: "predict_classes"
@ -252,7 +252,7 @@ tf_class {
} }
member_method { member_method {
name: "predict_generator" name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], " argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
} }
member_method { member_method {
name: "predict_on_batch" name: "predict_on_batch"