Merge pull request #41762 from zhuzilin:jit-scope-doc
PiperOrigin-RevId: 326629726 Change-Id: Ica8b43b09b634e1e5c6509c834340deaeb07a02c
This commit is contained in:
commit
ab9066730b
@ -70,6 +70,34 @@ def experimental_jit_scope(compile_ops=True, separate_compiled_gradients=False):
|
||||
h = tf.gradients([f], [a, b], name='mygrads2')
|
||||
```
|
||||
|
||||
Ops that are not in the scope may be clustered and compiled with ops in
|
||||
the scope with `compile_ops=True`, while the ops in the scope with
|
||||
`compile_ops=False` will never be compiled.
|
||||
|
||||
For example:
|
||||
|
||||
```python
|
||||
# In the example below, x and loss may be clustered and compiled together,
|
||||
# while y will not be compiled.
|
||||
with tf.xla.experimental.jit_scope():
|
||||
x = tf.matmul(a, b)
|
||||
with tf.xla.experimental.jit_scope(compile_ops=False):
|
||||
y = tf.matmul(c, d)
|
||||
loss = x + y
|
||||
```
|
||||
|
||||
If you want to only compile the ops in the scope with `compile_ops=True`,
|
||||
consider adding an outer `jit_scope(compile_ops=False)`:
|
||||
|
||||
```python
|
||||
# In the example below, only x will be compiled.
|
||||
with tf.xla.experimental.jit_scope(compile_ops=False):
|
||||
with tf.xla.experimental.jit_scope():
|
||||
x = tf.matmul(a, b)
|
||||
y = tf.matmul(c, d)
|
||||
loss = x + y
|
||||
```
|
||||
|
||||
Args:
|
||||
compile_ops: Whether to enable or disable compilation in the scope.
|
||||
Either a Python bool, or a callable that accepts the parameter
|
||||
|
Loading…
Reference in New Issue
Block a user