Fix the l2norm zip tests and re-enable all the fully_quantize tests through the new converter
PiperOrigin-RevId: 314469215 Change-Id: I6dfde69466270ec9ea6bdbef07c5aba45651cfd6
This commit is contained in:
parent
3379fb99c8
commit
ab7c94927a
|
@ -35,9 +35,14 @@ def make_l2norm_tests(options):
|
||||||
"epsilon": [None, 1e-12, 1e-3],
|
"epsilon": [None, 1e-12, 1e-3],
|
||||||
"fully_quantize": [False],
|
"fully_quantize": [False],
|
||||||
}, {
|
}, {
|
||||||
"input_shape": [[5, 7], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]],
|
"input_shape": [[1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]],
|
||||||
"dim": [0, 1, 2, 3, [2, 3], -2],
|
"dim": [3],
|
||||||
"epsilon": [None, 1e-12, 1e-3],
|
"epsilon": [None, 1e-12],
|
||||||
|
"fully_quantize": [True],
|
||||||
|
}, { # use another group of test so the dim is set to fuse to tfl.l2norm
|
||||||
|
"input_shape": [[5, 7]],
|
||||||
|
"dim": [1],
|
||||||
|
"epsilon": [None, 1e-12],
|
||||||
"fully_quantize": [True],
|
"fully_quantize": [True],
|
||||||
}]
|
}]
|
||||||
|
|
||||||
|
@ -62,4 +67,4 @@ def make_l2norm_tests(options):
|
||||||
test_parameters,
|
test_parameters,
|
||||||
build_graph,
|
build_graph,
|
||||||
build_inputs,
|
build_inputs,
|
||||||
expected_tf_failures=18)
|
expected_tf_failures=9)
|
||||||
|
|
|
@ -115,13 +115,6 @@ def toco_convert(options, graph_def, input_tensors, output_tensors, **kwargs):
|
||||||
converter = tf.compat.v1.lite.TFLiteConverter.from_frozen_graph(
|
converter = tf.compat.v1.lite.TFLiteConverter.from_frozen_graph(
|
||||||
graphdef_file.name, input_arrays, output_tensors, input_shapes)
|
graphdef_file.name, input_arrays, output_tensors, input_shapes)
|
||||||
|
|
||||||
# TODO(b/145313371): Evaluate should we make it work with the new
|
|
||||||
# converter.
|
|
||||||
# Note: Currently this line is a non-functional change because the new
|
|
||||||
# converter is disabled by default. Since this code path doesn't work
|
|
||||||
# with new converter yet, it's explicitly disabled for easier testing.
|
|
||||||
converter.experimental_new_converter = False
|
|
||||||
|
|
||||||
def representative_dataset(input_tensors):
|
def representative_dataset(input_tensors):
|
||||||
calibration_inputs = []
|
calibration_inputs = []
|
||||||
for _, shape, _ in input_tensors:
|
for _, shape, _ in input_tensors:
|
||||||
|
|
Loading…
Reference in New Issue