Workaround blasLt batch size limitation
- cublasLtMatmul does not always support batch sizes > 65535. - This commit breaks plan execution into repeated calls with up to the max batch size, followed by a remainder call.
This commit is contained in:
parent
7b477b8752
commit
aae59c53f4
@ -3258,6 +3258,8 @@ blas::ComputationType ToComputationType<std::complex<double>>() {
|
||||
class CUDABlasLtMatmulPlan final : public blas::IBlasLtMatmulPlan {
|
||||
public:
|
||||
port::Status init(const blas::BlasLtMatmulPlanParams& p) {
|
||||
params_ = p;
|
||||
scale_type_ = GetScaleType(p.c_type, p.computation_type);
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
op_desc_,
|
||||
CreateCublasLtOperationDesc(
|
||||
@ -3269,18 +3271,36 @@ class CUDABlasLtMatmulPlan final : public blas::IBlasLtMatmulPlan {
|
||||
uint64 cols_b = p.transb == blas::Transpose::kNoTranspose ? p.n : p.k;
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
a_desc_, CreateCublasLtLayoutDesc(p.ab_type, rows_a, cols_a, p.lda,
|
||||
p.stride_a, p.batch_count));
|
||||
p.stride_a, capped_batch_count()));
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
b_desc_, CreateCublasLtLayoutDesc(p.ab_type, rows_b, cols_b, p.ldb,
|
||||
p.stride_b, p.batch_count));
|
||||
p.stride_b, capped_batch_count()));
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
c_desc_, CreateCublasLtLayoutDesc(p.c_type, p.m, p.n, p.ldc, p.stride_c,
|
||||
p.batch_count));
|
||||
capped_batch_count()));
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
d_desc_, CreateCublasLtLayoutDesc(p.c_type, p.m, p.n, p.ldc, p.stride_c,
|
||||
p.batch_count));
|
||||
params_ = p;
|
||||
scale_type_ = GetScaleType(p.c_type, p.computation_type);
|
||||
capped_batch_count()));
|
||||
remainder_batch_count_ =
|
||||
p.batch_count > kMaxBatchCount ? p.batch_count % kMaxBatchCount : 0;
|
||||
if (remainder_batch_count_) {
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
a_remainder_desc_,
|
||||
CreateCublasLtLayoutDesc(p.ab_type, rows_a, cols_a, p.lda, p.stride_a,
|
||||
remainder_batch_count_));
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
b_remainder_desc_,
|
||||
CreateCublasLtLayoutDesc(p.ab_type, rows_b, cols_b, p.ldb, p.stride_b,
|
||||
remainder_batch_count_));
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
c_remainder_desc_,
|
||||
CreateCublasLtLayoutDesc(p.c_type, p.m, p.n, p.ldc, p.stride_c,
|
||||
remainder_batch_count_));
|
||||
SE_ASSIGN_OR_RETURN(
|
||||
d_remainder_desc_,
|
||||
CreateCublasLtLayoutDesc(p.c_type, p.m, p.n, p.ldc, p.stride_c,
|
||||
remainder_batch_count_));
|
||||
}
|
||||
return port::Status::OK();
|
||||
}
|
||||
|
||||
@ -3289,24 +3309,51 @@ class CUDABlasLtMatmulPlan final : public blas::IBlasLtMatmulPlan {
|
||||
cublasLtMatrixLayout_t b_desc() const { return b_desc_.get(); }
|
||||
cublasLtMatrixLayout_t c_desc() const { return c_desc_.get(); }
|
||||
cublasLtMatrixLayout_t d_desc() const { return d_desc_.get(); }
|
||||
cublasLtMatrixLayout_t a_remainder_desc() const {
|
||||
return a_remainder_desc_.get();
|
||||
}
|
||||
cublasLtMatrixLayout_t b_remainder_desc() const {
|
||||
return b_remainder_desc_.get();
|
||||
}
|
||||
cublasLtMatrixLayout_t c_remainder_desc() const {
|
||||
return c_remainder_desc_.get();
|
||||
}
|
||||
cublasLtMatrixLayout_t d_remainder_desc() const {
|
||||
return d_remainder_desc_.get();
|
||||
}
|
||||
|
||||
const blas::BlasLtMatmulPlanParams& params() const { return params_; }
|
||||
blas::DataType scale_type() const { return scale_type_; }
|
||||
blas::DataType ab_type() const override { return params_.ab_type; }
|
||||
blas::DataType c_type() const override { return params_.c_type; }
|
||||
int capped_batch_count() const {
|
||||
return std::min(params_.batch_count, kMaxBatchCount);
|
||||
}
|
||||
int remainder_batch_count() const { return remainder_batch_count_; }
|
||||
|
||||
// Note: Must be const to satisfy API. This is always called before the plan
|
||||
// is executed, so the state change is not observed in subsequent executions.
|
||||
bool SetBiasPointer(const void *bias) const;
|
||||
|
||||
private:
|
||||
// In some cases cublasLt does not support large batch sizes, so we need to
|
||||
// split up such cases into multiple calls.
|
||||
static constexpr const int kMaxBatchCount = 65535;
|
||||
blas::BlasLtMatmulPlanParams params_;
|
||||
blas::DataType scale_type_;
|
||||
UniqueOpDesc op_desc_;
|
||||
// These have batch count set to capped_batch_count().
|
||||
UniqueLayoutDesc a_desc_;
|
||||
UniqueLayoutDesc b_desc_;
|
||||
UniqueLayoutDesc c_desc_;
|
||||
UniqueLayoutDesc d_desc_;
|
||||
blas::BlasLtMatmulPlanParams params_;
|
||||
blas::DataType scale_type_;
|
||||
int remainder_batch_count_;
|
||||
// These have batch count set to remainder_batch_count_, and are only created
|
||||
// if params_.batch_count > kMaxBatchSize.
|
||||
UniqueLayoutDesc a_remainder_desc_;
|
||||
UniqueLayoutDesc b_remainder_desc_;
|
||||
UniqueLayoutDesc c_remainder_desc_;
|
||||
UniqueLayoutDesc d_remainder_desc_;
|
||||
};
|
||||
|
||||
bool CUDABlasLtMatmulPlan::SetBiasPointer(const void *bias) const {
|
||||
@ -3409,9 +3456,10 @@ CUDABlas::CreateBlasLtMatmulPlan(const blas::BlasLtMatmulPlanParams &p) {
|
||||
}
|
||||
|
||||
port::StatusOr<std::vector<std::unique_ptr<blas::IBlasLtMatmulAlgorithm>>>
|
||||
CUDABlas::GetBlasLtMatmulAlgorithms(const blas::IBlasLtMatmulPlan *plan,
|
||||
size_t max_workspace_size,
|
||||
int max_algorithm_count) {
|
||||
CUDABlas::GetBlasLtMatmulAlgorithmsInternal(const blas::IBlasLtMatmulPlan* plan,
|
||||
size_t max_workspace_size,
|
||||
int max_algorithm_count,
|
||||
bool for_remainder_batch) {
|
||||
#if CUDA_VERSION >= 11000
|
||||
SE_ASSIGN_OR_RETURN(UniqueMatmulPreference preference,
|
||||
CreateCublasLtMatmulPreference(plan, max_workspace_size));
|
||||
@ -3426,10 +3474,18 @@ CUDABlas::GetBlasLtMatmulAlgorithms(const blas::IBlasLtMatmulPlan *plan,
|
||||
|
||||
int found_algorithm_count = 0;
|
||||
const auto &cuda_plan = *static_cast<const CUDABlasLtMatmulPlan *>(plan);
|
||||
const auto& a_desc =
|
||||
for_remainder_batch ? cuda_plan.a_remainder_desc() : cuda_plan.a_desc();
|
||||
const auto& b_desc =
|
||||
for_remainder_batch ? cuda_plan.b_remainder_desc() : cuda_plan.b_desc();
|
||||
const auto& c_desc =
|
||||
for_remainder_batch ? cuda_plan.c_remainder_desc() : cuda_plan.c_desc();
|
||||
const auto& d_desc =
|
||||
for_remainder_batch ? cuda_plan.d_remainder_desc() : cuda_plan.d_desc();
|
||||
cublasStatus_t status = cublasLtMatmulAlgoGetHeuristic(
|
||||
blasLt_, cuda_plan.op_desc(), cuda_plan.a_desc(), cuda_plan.b_desc(),
|
||||
cuda_plan.c_desc(), cuda_plan.d_desc(), preference.get(),
|
||||
max_algorithm_count, results.data(), &found_algorithm_count);
|
||||
blasLt_, cuda_plan.op_desc(), a_desc, b_desc, c_desc, d_desc,
|
||||
preference.get(), max_algorithm_count, results.data(),
|
||||
&found_algorithm_count);
|
||||
if (status != CUBLAS_STATUS_SUCCESS) {
|
||||
return port::Status(
|
||||
port::error::INTERNAL,
|
||||
@ -3455,6 +3511,14 @@ CUDABlas::GetBlasLtMatmulAlgorithms(const blas::IBlasLtMatmulPlan *plan,
|
||||
#endif
|
||||
}
|
||||
|
||||
port::StatusOr<std::vector<std::unique_ptr<blas::IBlasLtMatmulAlgorithm>>>
|
||||
CUDABlas::GetBlasLtMatmulAlgorithms(const blas::IBlasLtMatmulPlan* plan,
|
||||
size_t max_workspace_size,
|
||||
int max_algorithm_count) {
|
||||
return GetBlasLtMatmulAlgorithmsInternal(plan, max_workspace_size,
|
||||
max_algorithm_count);
|
||||
}
|
||||
|
||||
#if CUDA_VERSION >= 11000
|
||||
bool CUDABlas::DoBlasLtMatmulInternal(
|
||||
Stream *stream, bool err_on_failure, const blas::IBlasLtMatmulPlan *plan,
|
||||
@ -3513,6 +3577,28 @@ bool CUDABlas::DoBlasLtMatmulInternal(
|
||||
}
|
||||
}
|
||||
|
||||
// This is only used when batch_count > kMaxBatchCount.
|
||||
std::unique_ptr<blas::IBlasLtMatmulAlgorithm> unique_remainder_algo;
|
||||
if (cuda_plan.remainder_batch_count()) {
|
||||
// There is no easy way to get the user-specified max workspace size here,
|
||||
// so we just allow a very small amount and don't worry too much about
|
||||
// performance because this is only used in rare cases. The same reasoning
|
||||
// applies to selection of the algorithm.
|
||||
size_t max_workspace_size = 4 * 1024 * 1024; // 4 MiB
|
||||
auto status_or_algorithms =
|
||||
GetBlasLtMatmulAlgorithmsInternal(plan, max_workspace_size,
|
||||
/* max_algorithm_count = */ 1,
|
||||
/* for_remainder_batch = */ true);
|
||||
if (!status_or_algorithms.ok()) {
|
||||
if (err_on_failure || VLOG_IS_ON(3)) {
|
||||
LOG(ERROR) << "Failed to get algorithms for blasLt remainder batch.";
|
||||
}
|
||||
return false;
|
||||
}
|
||||
auto algorithms = status_or_algorithms.ConsumeValueOrDie();
|
||||
unique_remainder_algo = std::move(algorithms.front());
|
||||
}
|
||||
|
||||
cudaStream_t cuda_stream = CUDAStream(stream);
|
||||
|
||||
absl::MutexLock lock(&mu_);
|
||||
@ -3529,16 +3615,67 @@ bool CUDABlas::DoBlasLtMatmulInternal(
|
||||
|
||||
gpu::ScopedActivateExecutorContext sac{parent_};
|
||||
|
||||
cublasStatus_t ret = cublasLtMatmul(
|
||||
blasLt_, cuda_plan.op_desc(), alpha_ptr, a.opaque(), cuda_plan.a_desc(),
|
||||
b.opaque(), cuda_plan.b_desc(), beta_ptr, c.opaque(), cuda_plan.c_desc(),
|
||||
d.opaque(), cuda_plan.d_desc(), cuda_algo.algo(), workspace,
|
||||
cuda_algo.workspace_size(), cuda_stream);
|
||||
if (ret != CUBLAS_STATUS_SUCCESS) {
|
||||
if (err_on_failure || VLOG_IS_ON(3)) {
|
||||
LOG(ERROR) << "failed to run cublasLtMatmul routine: " << ToString(ret);
|
||||
// Plan execution is broken down into repeat calls with capped_batch_count,
|
||||
// followed by a final call with remainder_batch_count.
|
||||
// Cases where batch_count <= kMaxBatchCount require only a single call (a
|
||||
// single loop iteration and no remainder).
|
||||
int ab_type_size = GetDataTypeSizeBytes(cuda_plan.params().ab_type);
|
||||
int c_type_size = GetDataTypeSizeBytes(cuda_plan.params().c_type);
|
||||
const char* a_ptr = static_cast<const char*>(a.opaque());
|
||||
const char* b_ptr = static_cast<const char*>(b.opaque());
|
||||
const char* c_ptr = static_cast<const char*>(c.opaque());
|
||||
char* d_ptr = static_cast<char*>(d.opaque());
|
||||
int capped_batch_count = cuda_plan.capped_batch_count();
|
||||
for (int batch = 0;
|
||||
batch + capped_batch_count <= cuda_plan.params().batch_count;
|
||||
batch += capped_batch_count) {
|
||||
cublasStatus_t ret = cublasLtMatmul(
|
||||
blasLt_, cuda_plan.op_desc(), alpha_ptr, a_ptr, cuda_plan.a_desc(),
|
||||
b_ptr, cuda_plan.b_desc(), beta_ptr, c_ptr, cuda_plan.c_desc(), d_ptr,
|
||||
cuda_plan.d_desc(), cuda_algo.algo(), workspace,
|
||||
cuda_algo.workspace_size(), cuda_stream);
|
||||
if (ret != CUBLAS_STATUS_SUCCESS) {
|
||||
if (err_on_failure || VLOG_IS_ON(3)) {
|
||||
LOG(ERROR) << "failed to run cublasLtMatmul routine: " << ToString(ret);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
a_ptr += capped_batch_count * cuda_plan.params().stride_a * ab_type_size;
|
||||
b_ptr += capped_batch_count * cuda_plan.params().stride_b * ab_type_size;
|
||||
c_ptr += capped_batch_count * cuda_plan.params().stride_c * c_type_size;
|
||||
d_ptr += capped_batch_count * cuda_plan.params().stride_c * c_type_size;
|
||||
}
|
||||
// This is only used when batch_count > kMaxBatchCount.
|
||||
if (cuda_plan.remainder_batch_count()) {
|
||||
const auto& remainder_algo = *static_cast<const CUDABlasLtMatmulAlgorithm*>(
|
||||
unique_remainder_algo.get());
|
||||
if (remainder_algo.workspace_size()) {
|
||||
port::Status allocation_status = AllocateWorkspace(
|
||||
&workspace, scratch_allocator, remainder_algo.workspace_size());
|
||||
if (!allocation_status.ok()) {
|
||||
if (err_on_failure || VLOG_IS_ON(3)) {
|
||||
LOG(ERROR) << "Failed to allocate workspace for cublasLtMatmul algo "
|
||||
"with id: "
|
||||
<< remainder_algo.algo_id() << " requiring "
|
||||
<< remainder_algo.workspace_size()
|
||||
<< " bytes of workspace";
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
cublasStatus_t ret = cublasLtMatmul(
|
||||
blasLt_, cuda_plan.op_desc(), alpha_ptr, a_ptr,
|
||||
cuda_plan.a_remainder_desc(), b_ptr, cuda_plan.b_remainder_desc(),
|
||||
beta_ptr, c_ptr, cuda_plan.c_remainder_desc(), d_ptr,
|
||||
cuda_plan.d_remainder_desc(), remainder_algo.algo(), workspace,
|
||||
remainder_algo.workspace_size(), cuda_stream);
|
||||
if (ret != CUBLAS_STATUS_SUCCESS) {
|
||||
if (err_on_failure || VLOG_IS_ON(3)) {
|
||||
LOG(ERROR) << "failed to run remainder cublasLtMatmul routine: "
|
||||
<< ToString(ret);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -150,6 +150,13 @@ class CUDABlas : public blas::BlasSupport {
|
||||
const blas::IBlasLtMatmulAlgorithm *algorithm,
|
||||
DeviceMemoryBase bias);
|
||||
|
||||
// Helper function for implementing GetBlasLtMatmulAlgorithms.
|
||||
port::StatusOr<std::vector<std::unique_ptr<blas::IBlasLtMatmulAlgorithm>>>
|
||||
GetBlasLtMatmulAlgorithmsInternal(const blas::IBlasLtMatmulPlan* plan,
|
||||
size_t max_workspace_size,
|
||||
int max_algorithm_count,
|
||||
bool for_remainder_batch = false);
|
||||
|
||||
// Guards the cuBLAS handle for this device.
|
||||
absl::Mutex mu_;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user