Add a test for model.predict with tf.keras.layers.ConvLSTM2D layer when XLA dynamic padder is enabled.

PiperOrigin-RevId: 326043413
Change-Id: I38837b69a1bb09190f0c85b31d6d26ede4963e11
This commit is contained in:
Ruoxin Sang 2020-08-11 10:03:07 -07:00 committed by TensorFlower Gardener
parent 1cca3190a7
commit aa9d2d80f4

View File

@ -251,6 +251,33 @@ class KerasModelsTest(test.TestCase, parameterized.TestCase):
train_step(input_iterator)
@combinations.generate(
combinations.combine(
distribution=strategy_combinations.all_strategies,
mode=["eager"]))
def test_model_predict_with_dynamic_batch(self, distribution):
input_data = np.random.random([1, 32, 64, 64, 3])
input_shape = tuple(input_data.shape[1:])
def build_model():
model = keras.models.Sequential()
model.add(
keras.layers.ConvLSTM2D(
4,
kernel_size=(4, 4),
activation="sigmoid",
padding="same",
input_shape=input_shape))
model.add(keras.layers.GlobalMaxPooling2D())
model.add(keras.layers.Dense(2, activation="sigmoid"))
return model
with distribution.scope():
model = build_model()
model.compile(loss="binary_crossentropy", optimizer="adam")
result = model.predict(input_data)
self.assertEqual(result.shape, (1, 2))
@combinations.generate(
combinations.combine(
distribution=strategy_combinations.all_strategies,