Add a test for model.predict with tf.keras.layers.ConvLSTM2D layer when XLA dynamic padder is enabled.
PiperOrigin-RevId: 326043413 Change-Id: I38837b69a1bb09190f0c85b31d6d26ede4963e11
This commit is contained in:
parent
1cca3190a7
commit
aa9d2d80f4
@ -251,6 +251,33 @@ class KerasModelsTest(test.TestCase, parameterized.TestCase):
|
||||
|
||||
train_step(input_iterator)
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=strategy_combinations.all_strategies,
|
||||
mode=["eager"]))
|
||||
def test_model_predict_with_dynamic_batch(self, distribution):
|
||||
input_data = np.random.random([1, 32, 64, 64, 3])
|
||||
input_shape = tuple(input_data.shape[1:])
|
||||
|
||||
def build_model():
|
||||
model = keras.models.Sequential()
|
||||
model.add(
|
||||
keras.layers.ConvLSTM2D(
|
||||
4,
|
||||
kernel_size=(4, 4),
|
||||
activation="sigmoid",
|
||||
padding="same",
|
||||
input_shape=input_shape))
|
||||
model.add(keras.layers.GlobalMaxPooling2D())
|
||||
model.add(keras.layers.Dense(2, activation="sigmoid"))
|
||||
return model
|
||||
|
||||
with distribution.scope():
|
||||
model = build_model()
|
||||
model.compile(loss="binary_crossentropy", optimizer="adam")
|
||||
result = model.predict(input_data)
|
||||
self.assertEqual(result.shape, (1, 2))
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=strategy_combinations.all_strategies,
|
||||
|
Loading…
Reference in New Issue
Block a user