Support weighted sparse column in sdca optimizer.
Change: 127093435
This commit is contained in:
parent
cd2162b3ea
commit
a9e8768274
@ -203,6 +203,33 @@ class LinearClassifierTest(tf.test.TestCase):
|
||||
scores = classifier.evaluate(input_fn=input_fn, steps=2)
|
||||
self.assertGreater(scores['accuracy'], 0.9)
|
||||
|
||||
def testSdcaOptimizerWeightedSparseFeatures(self):
|
||||
"""LinearClasssifier with SDCAOptimizer and weighted sparse features."""
|
||||
|
||||
def input_fn():
|
||||
return {
|
||||
'example_id': tf.constant(['1', '2', '3']),
|
||||
'price': tf.SparseTensor(values=[2., 3., 1.],
|
||||
indices=[[0, 0], [1, 0], [2, 0]],
|
||||
shape=[3, 5]),
|
||||
'country': tf.SparseTensor(values=['IT', 'US', 'GB'],
|
||||
indices=[[0, 0], [1, 0], [2, 0]],
|
||||
shape=[3, 5])
|
||||
}, tf.constant([[1], [0], [1]])
|
||||
|
||||
country = tf.contrib.layers.sparse_column_with_hash_bucket(
|
||||
'country', hash_bucket_size=5)
|
||||
country_weighted_by_price = tf.contrib.layers.weighted_sparse_column(
|
||||
country, 'price')
|
||||
sdca_optimizer = tf.contrib.learn.SDCAOptimizer(
|
||||
example_id_column='example_id')
|
||||
classifier = tf.contrib.learn.LinearClassifier(
|
||||
feature_columns=[country_weighted_by_price],
|
||||
optimizer=sdca_optimizer)
|
||||
classifier.fit(input_fn=input_fn, steps=50)
|
||||
scores = classifier.evaluate(input_fn=input_fn, steps=2)
|
||||
self.assertGreater(scores['accuracy'], 0.9)
|
||||
|
||||
def testSdcaOptimizerCrossedFeatures(self):
|
||||
"""Tests LinearClasssifier with SDCAOptimizer and crossed features."""
|
||||
|
||||
|
@ -124,6 +124,17 @@ class SDCAOptimizer(object):
|
||||
column.length)
|
||||
sparse_features.append(math_ops.to_float(sparse_features_tensor))
|
||||
sparse_features_weights.append(columns_to_variables[column][0])
|
||||
elif isinstance(
|
||||
column,
|
||||
layers.feature_column._WeightedSparseColumn): # pylint: disable=protected-access
|
||||
id_tensor = column.id_tensor(transformed_tensor)
|
||||
weight_tensor = column.weight_tensor(transformed_tensor)
|
||||
sparse_features_tensor = sparse_ops.sparse_merge(
|
||||
id_tensor, weight_tensor, column.length,
|
||||
name="{}_sparse_merge".format(column.name))
|
||||
sparse_features.append(math_ops.to_float(
|
||||
sparse_features_tensor, name="{}_to_float".format(column.name)))
|
||||
sparse_features_weights.append(columns_to_variables[column][0])
|
||||
else:
|
||||
raise ValueError("SDCAOptimizer does not support column type %s." %
|
||||
type(column).__name__)
|
||||
|
Loading…
Reference in New Issue
Block a user