diff --git a/tensorflow/contrib/cudnn_rnn/python/layers/cudnn_rnn.py b/tensorflow/contrib/cudnn_rnn/python/layers/cudnn_rnn.py index 1cb477716df..c4e37b41c85 100644 --- a/tensorflow/contrib/cudnn_rnn/python/layers/cudnn_rnn.py +++ b/tensorflow/contrib/cudnn_rnn/python/layers/cudnn_rnn.py @@ -104,7 +104,7 @@ class _CudnnRNN(base_layer.Layer): # Inference subgraph for unidirectional RNN on, e.g., CPU or mobile. with tf.Graph().as_default(): - single_cell = lambda: tf.contrib.cudnn_rnn.CudnnCompatibleLSTM(num_units) + single_cell = lambda: tf.contrib.cudnn_rnn.CudnnCompatibleLSTMCell(num_units) # NOTE: Even if there's only one layer, the cell needs to be wrapped in # MultiRNNCell. @@ -124,7 +124,7 @@ class _CudnnRNN(base_layer.Layer): # Inference subgraph for bidirectional RNN with tf.Graph().as_default(): - single_cell = lambda: tf.contrib.cudnn_rnn.CudnnCompatibleLSTM(num_units) + single_cell = lambda: tf.contrib.cudnn_rnn.CudnnCompatibleLSTMCell(num_units) cells_fw = [single_cell() for _ in range(num_layers)] cells_bw = [single_cell() for _ in range(num_layers)]