Add support to for composite tensors, such as SparseTensor and RaggedTensor, to while_v2

PiperOrigin-RevId: 245285953
This commit is contained in:
Edward Loper 2019-04-25 12:30:56 -07:00 committed by TensorFlower Gardener
parent 421802c1b4
commit a74f9c3c61
5 changed files with 118 additions and 75 deletions

View File

@ -1761,10 +1761,10 @@ class IndexedSlices(_TensorLike, composite_tensor.CompositeTensor):
if shape is None:
shape = self._values.shape
if self._dense_shape is None:
return [shape, shape[:1]] # values, indices
return (shape, shape[:1]) # values, indices
else:
# values, indices, dense_shape
return [shape, shape[:1], tensor_shape.TensorShape([shape.ndims])]
return (shape, shape[:1], tensor_shape.TensorShape([shape.ndims]))
@property
def _is_graph_tensor(self):

View File

@ -250,11 +250,11 @@ class SparseTensor(_TensorLike, composite_tensor.CompositeTensor):
raise ValueError("Shape invariant for SparseTensor must have the form "
"TensorShape([r]), got %r" % shape)
rank = tensor_shape.dimension_value(shape[0])
return [
return (
tensor_shape.TensorShape([None, rank]), # indices
tensor_shape.TensorShape([None]), # values
tensor_shape.TensorShape([rank]) # dense_shape
]
)
@property
def _is_graph_tensor(self):

View File

@ -1790,6 +1790,18 @@ class ControlFlowTest(test.TestCase):
r = r[1] * array_ops.ones([8, 8])
self.assertAllEqual(np.ones((8, 8)), self.evaluate(r))
@test_util.disable_control_flow_v2("b/131265085")
@test_util.run_v1_only("b/131265085")
def testWhileBadShape(self):
x = constant_op.constant([2.0, 4.0], name="values")
i = constant_op.constant(0)
c = lambda i, _: math_ops.less(i, 10)
b = lambda i, x: [i + 1, x + 1]
with self.assertRaisesRegexp(ValueError, "is not compatible with"):
# Shape of x is [2], but we specify a shape of [5].
control_flow_ops.while_loop(
c, b, [i, x], [i.shape, tensor_shape.TensorShape([5])])
@test_util.run_deprecated_v1
def testWhileWithNonTensorInput_Scalar(self):
with self.cached_session():
@ -1807,7 +1819,6 @@ class ControlFlowTest(test.TestCase):
r = control_flow_ops.while_loop(c, b, [n], parallel_iterations=20)
self.assertEqual([10000], self.evaluate(r))
@test_util.run_v1_only("b/120545219")
def testWhileShapeInference(self):
with self.cached_session():
i = constant_op.constant(0)
@ -1822,19 +1833,23 @@ class ControlFlowTest(test.TestCase):
r = control_flow_ops.while_loop(
c, b, [i, m],
[i.get_shape(), tensor_shape.TensorShape([None, 2])])
self.assertIsNone(r[1].shape.dims[0].value)
self.assertEqual(r[1].shape.dims[1], tensor_shape.Dimension(2))
self.assertTrue(r[1].shape.is_compatible_with([8, 2]))
@test_util.run_v1_only("b/120545219")
def testWhileShapeInferenceBadShape(self):
with self.cached_session():
i = constant_op.constant(0)
m = array_ops.ones([2, 2])
c = lambda i, j: math_ops.less(i, 2)
b = lambda i, j: [i + 1, array_ops.concat([j, j], 0)]
with self.assertRaisesRegexp(
ValueError,
r"Input tensor 'ones:0' enters the loop with shape \(2, 2\), but has "
r"shape \(4, 2\) after one iteration. To allow the shape to vary "
r"across iterations, use the `shape_invariants` argument of "
r"tf.while_loop to specify a less-specific shape."):
r = control_flow_ops.while_loop(c, b, [i, m])
control_flow_ops.while_loop(c, b, [i, m])
@test_util.disable_control_flow_v2("b/116328420 (SparseTensor)")
@test_util.run_v1_only("b/120545219")
def testWhileShapeInferenceSparseTensor(self):
values = constant_op.constant([2.0, 4.0], name="values")
indices = constant_op.constant([[0], [3]],
@ -1873,61 +1888,72 @@ class ControlFlowTest(test.TestCase):
array_ops.concat([x.dense_shape, [10]], axis=0))
]
def check_shapes(r, indices, values, dense_shape):
self.assertTrue(r.indices.shape.is_compatible_with(indices))
self.assertTrue(r.values.shape.is_compatible_with(values))
self.assertTrue(r.dense_shape.shape.is_compatible_with(dense_shape))
# Default shape invariant; b1 only modifies values.
_, r = control_flow_ops.while_loop(c, b1, [i, x])
self.assertEqual(r.indices.get_shape().as_list(), [None, 1])
self.assertEqual(r.values.get_shape().as_list(), [None])
self.assertEqual(r.dense_shape.get_shape().as_list(), [1])
check_shapes(r, indices=[None, 1], values=[None], dense_shape=[1])
# Default shape invariant; b2 adds new values
_, r = control_flow_ops.while_loop(c, b2, [i, x])
self.assertEqual(r.indices.get_shape().as_list(), [None, 1])
self.assertEqual(r.values.get_shape().as_list(), [None])
self.assertEqual(r.dense_shape.get_shape().as_list(), [1])
# Default shape invariant; b3 modifies rank (which is not allowed).
with self.assertRaises(ValueError):
_, r = control_flow_ops.while_loop(c, b3, [i, x])
check_shapes(r, indices=[None, 1], values=[None], dense_shape=[1])
# Explicit shape invariant, allowing any rank; b1 only modifies values.
_, r = control_flow_ops.while_loop(
c, b1, [i, x],
[i.get_shape(), tensor_shape.TensorShape([None])])
self.assertEqual(r.indices.get_shape().as_list(), [None, None])
self.assertEqual(r.values.get_shape().as_list(), [None])
self.assertEqual(r.dense_shape.get_shape().as_list(), [None])
check_shapes(r, indices=[None, None], values=[None], dense_shape=[None])
# Explicit shape invariant, allowing any rank; b3 modifies rank.
_, r = control_flow_ops.while_loop(
c, b3, [i, x],
[i.get_shape(), tensor_shape.TensorShape([None])])
self.assertEqual(r.indices.get_shape().as_list(), [None, None])
self.assertEqual(r.values.get_shape().as_list(), [None])
self.assertEqual(r.dense_shape.get_shape().as_list(), [None])
check_shapes(r, indices=[None, None], values=[None], dense_shape=[None])
# Shape invariant with ndims=None. Technically, this isn't supported
# according to the docs, but we support it for backwards compatibility.
_, r = control_flow_ops.while_loop(
c, b1, [i, x],
[i.get_shape(), tensor_shape.TensorShape(None)])
self.assertEqual(r.indices.get_shape().as_list(), [None, None])
self.assertEqual(r.values.get_shape().as_list(), [None])
self.assertEqual(r.dense_shape.get_shape().as_list(), [None])
check_shapes(r, indices=[None, None], values=[None], dense_shape=[None])
_, r = control_flow_ops.while_loop(
c, b3, [i, x],
[i.get_shape(), tensor_shape.TensorShape(None)])
self.assertEqual(r.indices.get_shape().as_list(), [None, None])
self.assertEqual(r.values.get_shape().as_list(), [None])
self.assertEqual(r.dense_shape.get_shape().as_list(), [None])
check_shapes(r, indices=[None, None], values=[None], dense_shape=[None])
@test_util.disable_control_flow_v2("b/131265085")
@test_util.run_v1_only("b/131265085")
def testWhileBadShapeSparseTensor(self):
values = constant_op.constant([2.0, 4.0], name="values")
indices = constant_op.constant([[0], [3]],
dtype=dtypes.int64,
name="indices")
shape = constant_op.constant([10], dtype=dtypes.int64, name="dense_shape")
i = constant_op.constant(0)
x = sparse_tensor.SparseTensor(indices, values, dense_shape=shape)
c = lambda i, _: i < 10
b1 = lambda i, x: [i+1, x]
def b2(i, x): # modifies rank. (shape of all components is changed.)
return [
i + 1,
sparse_tensor.SparseTensor(
array_ops.concat([x.indices, [[i], [i]]], axis=1), x.values * 2.0,
array_ops.concat([x.dense_shape, [10]], axis=0))
]
# Explicit shape invariant, with a specific (incompatible) rank.
with self.assertRaisesRegexp(ValueError, "is not compatible with"):
_, r = control_flow_ops.while_loop(
control_flow_ops.while_loop(
c, b1, [i, x],
[i.get_shape(), tensor_shape.TensorShape([5])])
@test_util.disable_control_flow_v2("b/116282023 (IndexedSlices)")
@test_util.run_v1_only("b/120545219")
# Default shape invariant, but b2 modifies rank (which is not allowed).
with self.assertRaises(ValueError):
control_flow_ops.while_loop(c, b2, [i, x])
def testWhileShapeInferenceIndexedSlices(self):
with self.cached_session():
values = constant_op.constant([[2.0, 4.0], [3.0, 5.0]], name="values")
@ -1953,17 +1979,28 @@ class ControlFlowTest(test.TestCase):
c, b, [i, x],
[i.get_shape(), tensor_shape.TensorShape([None, 2])])
self.assertEqual(r.dense_shape.get_shape()[0], 2)
self.assertEqual(r.values.get_shape().as_list(), [None, 2])
self.assertTrue(r.values.get_shape().is_compatible_with([None, 2]))
with self.assertRaisesRegexp(ValueError, "is not compatible with"):
_, r = control_flow_ops.while_loop(
c, b, [i, x],
[i.get_shape(), tensor_shape.TensorShape([None, 5])])
@test_util.disable_control_flow_v2("b/131265085")
@test_util.run_v1_only("b/131265085")
def testWhileBadShapeIndexedSlices(self):
values = constant_op.constant([2.0, 4.0], name="values")
indices = constant_op.constant([[0], [3]],
dtype=dtypes.int64,
name="indices")
shape = constant_op.constant([10], dtype=dtypes.int64, name="dense_shape")
i = constant_op.constant(0)
x = sparse_tensor.SparseTensor(indices, values, dense_shape=shape)
c = lambda i, _: 10
b = lambda i, x: [i+1, x]
# Explicit shape invariant, with a specific (incompatible) rank.
with self.assertRaisesRegexp(ValueError, "is not compatible with"):
control_flow_ops.while_loop(
c, b, [i, x],
[i.get_shape(), tensor_shape.TensorShape([5])])
@test_util.disable_control_flow_v2("b/116328420 (RaggedTensor)")
def testWhileShapeInferenceRaggedTensor(self):
if context.executing_eagerly():
self.skipTest("b/116328420")
i = constant_op.constant(0)
x = ragged_factory_ops.constant([[1, 2], [3], [4, 5, 6]])
c = lambda i, _: i < 10
@ -1980,11 +2017,13 @@ class ControlFlowTest(test.TestCase):
array_ops.concat([x, x], axis=0)
]
def check_shapes(r, values, splits):
self.assertTrue(r.values.shape.is_compatible_with(values))
self.assertTrue(r.row_splits.shape.is_compatible_with(splits))
# Default shape invariant; b1 adds new values to rows.
_, r = control_flow_ops.while_loop(c, b1, [i, x])
self.assertEqual(r.row_splits.shape.as_list(), [4])
self.assertTrue(r.values.shape.as_list() in ([6 * 2**10], [None]))
check_shapes(r, values=[None], splits=[4])
# Default shape invariant; b2 adds new rows (not allowed).
if not context.executing_eagerly():
@ -1995,20 +2034,15 @@ class ControlFlowTest(test.TestCase):
_, r = control_flow_ops.while_loop(
c, b1, [i, x],
[i.get_shape(), tensor_shape.TensorShape([None, None])])
self.assertTrue(r.row_splits.shape.as_list() in ([4], [None]))
self.assertTrue(r.values.shape.as_list() in ([6 * 2**10], [None]))
check_shapes(r, values=[None], splits=[None])
# Explicit shape invariant; b2 adds new rows.
_, r = control_flow_ops.while_loop(
c, b2, [i, x],
[i.get_shape(), tensor_shape.TensorShape([None, None])])
self.assertTrue(r.row_splits.shape.as_list() in ([3 * 2**10 + 1], [None]))
self.assertTrue(r.values.shape.as_list() in ([6 * 2**10], [None]))
check_shapes(r, values=[None], splits=[None])
@test_util.disable_control_flow_v2("b/116328420 (RaggedTensor)")
def testWhileShapeInferenceRaggedTensorRaggedRank2(self):
if context.executing_eagerly():
self.skipTest("b/116328420")
i = constant_op.constant(0)
x = ragged_factory_ops.constant([[[1, 2], [3], [4, 5, 6]],
[[], [8, 9, 10]]])
@ -3473,8 +3507,7 @@ class ControlFlowTest(test.TestCase):
self.assertEqual(0, value_x)
self.assertEqual(73, value_x_grad)
@test_util.disable_control_flow_v2("b/116282023 (IndexedSlices)")
@test_util.run_v1_only("b/120545219")
@test_util.deprecated_graph_mode_only
def testWhileGrad_IndexedSlices(self):
with self.cached_session():
values = constant_op.constant([2.0, 4.0], name="values")
@ -3496,8 +3529,7 @@ class ControlFlowTest(test.TestCase):
r = gradients_impl.gradients(r.values, values)[0]
self.assertAllClose(np.array([1024.0, 1024.0]), self.evaluate(r))
@test_util.disable_control_flow_v2("b/116328420 (SparseTensor)")
@test_util.run_v1_only("b/120545219")
@test_util.deprecated_graph_mode_only
def testWhileGrad_SparseTensor(self):
with self.cached_session():
values = constant_op.constant([2.0, 4.0], name="values")
@ -3520,7 +3552,7 @@ class ControlFlowTest(test.TestCase):
r = gradients_impl.gradients(r.values, values)[0]
self.assertAllClose(np.array([1024.0, 1024.0]), self.evaluate(r))
@test_util.run_v1_only("b/120545219")
@test_util.deprecated_graph_mode_only
def testCallGradInLoop(self):
with self.cached_session() as sess:
i0 = constant_op.constant(0)

View File

@ -3466,7 +3466,7 @@ def while_loop(cond,
return x
return ops.convert_to_tensor(x)
loop_vars = nest.map_structure(convert, loop_vars)
loop_vars = nest.map_structure(convert, loop_vars, expand_composites=True)
if maximum_iterations is not None:
return loop_vars[1]
else:

View File

@ -72,12 +72,18 @@ def while_loop(cond,
# `wrapped_body` below.
loop_vars = list(_tensor_array_to_flow(orig_loop_vars))
loop_vars = nest.map_structure(
ops.internal_convert_to_tensor_or_indexed_slices, loop_vars)
ops.internal_convert_to_tensor_or_indexed_slices, loop_vars,
expand_composites=True)
if shape_invariants is not None:
nest.assert_same_structure(orig_loop_vars, shape_invariants)
nest.assert_same_structure(orig_loop_vars, shape_invariants,
expand_composites=False)
shape_invariants = nest.map_structure(
control_flow_ops._get_shape_invariant, loop_vars,
list(shape_invariants), expand_composites=False)
else:
shape_invariants = nest.map_structure(lambda t: t.shape, loop_vars)
shape_invariants = nest.map_structure(
control_flow_ops._get_shape_invariant, loop_vars,
expand_composites=False)
if not name:
name = "while"
@ -150,11 +156,12 @@ def while_loop(cond,
# `orig_loop_vars` and `args`, converts flows in `args` to TensorArrays
# and packs it into the structure of `orig_loop_vars`.
outputs = body(*_pack_sequence_as(orig_loop_vars, args))
if not nest.is_sequence(outputs):
if not nest.is_sequence_or_composite(outputs):
outputs = [outputs]
# Compare the structure of input and output of body converting the
# top-level tuples to list to be compatible with legacy while_loop.
nest.assert_same_structure(list(outputs), list(orig_loop_vars))
nest.assert_same_structure(list(outputs), list(orig_loop_vars),
expand_composites=True)
outputs = _tensor_array_to_flow(outputs)
@ -193,7 +200,8 @@ def while_loop(cond,
# Make sure that the shapes of the loop outputs are compatible with the
# shape invariants, or the shapes of the loop vars if the invariants are not
# specified.
num_flattened_outputs = len(nest.flatten(orig_loop_vars))
num_flattened_outputs = len(nest.flatten(orig_loop_vars,
expand_composites=True))
# First var is loop counter and second var is maximum_iterations.
first_loop_var_index = 2
_check_shapes_compat(
@ -201,10 +209,10 @@ def while_loop(cond,
num_flattened_outputs],
nest.flatten(
shape_invariants[first_loop_var_index:first_loop_var_index +
len_orig_loop_vars]),
len_orig_loop_vars], expand_composites=True),
nest.flatten(loop_vars[first_loop_var_index:first_loop_var_index +
len_orig_loop_vars]))
flattened_loop_vars = nest.flatten(loop_vars)
len_orig_loop_vars], expand_composites=True))
flattened_loop_vars = nest.flatten(loop_vars, expand_composites=True)
_check_num_inputs_outputs(cond_graph, body_graph,
len(flattened_loop_vars))
@ -237,7 +245,7 @@ def while_loop(cond,
if return_same_structure:
return outputs
flattened_outputs = nest.flatten(outputs)
flattened_outputs = nest.flatten(outputs, expand_composites=True)
if len(flattened_outputs) == 1:
return flattened_outputs[0]
else:
@ -905,9 +913,11 @@ def _pack_sequence_as(structure_with_tas, loop_vars):
flattened_loop_vars = [
flow_to_tensor_array(*z)
for z in zip(nest.flatten(loop_vars), nest.flatten(structure_with_tas))
for z in zip(nest.flatten(loop_vars, expand_composites=True),
nest.flatten(structure_with_tas, expand_composites=True))
]
return nest.pack_sequence_as(structure_with_tas, flattened_loop_vars)
return nest.pack_sequence_as(structure_with_tas, flattened_loop_vars,
expand_composites=True)
def _tensor_array_to_flow(loop_vars):
@ -917,14 +927,15 @@ def _tensor_array_to_flow(loop_vars):
return maybe_ta.flow
return maybe_ta
return nest.map_structure(f, loop_vars)
return nest.map_structure(f, loop_vars, expand_composites=True)
def _build_signature(loop_vars, shape_invariants):
return nest.pack_sequence_as(loop_vars, [
tensor_spec.TensorSpec(s, t.dtype, name=t.op.name)
for s, t in zip(nest.flatten(shape_invariants), nest.flatten(loop_vars))
])
for s, t in zip(nest.flatten(shape_invariants, expand_composites=True),
nest.flatten(loop_vars, expand_composites=True))
], expand_composites=True)
def _build_maximum_iterations_loop_var(maximum_iterations):