Move V1 optimizer code to a separate file optimizer_v1.py from the generic utils in optimizers.py.
PiperOrigin-RevId: 333495430 Change-Id: I6bf730dc507f067f79f51b7a5952b50549c7c5a4
This commit is contained in:
parent
e798106686
commit
a6b7e4b94c
@ -287,6 +287,7 @@ py_library(
|
|||||||
py_library(
|
py_library(
|
||||||
name = "optimizers",
|
name = "optimizers",
|
||||||
srcs = [
|
srcs = [
|
||||||
|
"optimizer_v1.py",
|
||||||
"optimizers.py",
|
"optimizers.py",
|
||||||
],
|
],
|
||||||
srcs_version = "PY2AND3",
|
srcs_version = "PY2AND3",
|
||||||
|
@ -36,7 +36,7 @@ from tensorflow.python.framework import tensor_util
|
|||||||
from tensorflow.python.keras import backend as K
|
from tensorflow.python.keras import backend as K
|
||||||
from tensorflow.python.keras import callbacks
|
from tensorflow.python.keras import callbacks
|
||||||
from tensorflow.python.keras import metrics as metrics_module
|
from tensorflow.python.keras import metrics as metrics_module
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras.distribute import distributed_training_utils as dist_utils
|
from tensorflow.python.keras.distribute import distributed_training_utils as dist_utils
|
||||||
from tensorflow.python.keras.engine import training_utils
|
from tensorflow.python.keras.engine import training_utils
|
||||||
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
||||||
@ -779,7 +779,7 @@ def _clone_and_build_model(model, mode, inputs=None, targets=None):
|
|||||||
cloned_model = models.clone_model(model, input_tensors=inputs)
|
cloned_model = models.clone_model(model, input_tensors=inputs)
|
||||||
|
|
||||||
# Compile and build model.
|
# Compile and build model.
|
||||||
if isinstance(model.optimizer, optimizers.TFOptimizer):
|
if isinstance(model.optimizer, optimizer_v1.TFOptimizer):
|
||||||
optimizer = model.optimizer
|
optimizer = model.optimizer
|
||||||
else:
|
else:
|
||||||
optimizer_config = model.optimizer.get_config()
|
optimizer_config = model.optimizer.get_config()
|
||||||
|
@ -42,7 +42,7 @@ from tensorflow.python.keras import backend
|
|||||||
from tensorflow.python.keras import callbacks
|
from tensorflow.python.keras import callbacks
|
||||||
from tensorflow.python.keras import metrics as metrics_module
|
from tensorflow.python.keras import metrics as metrics_module
|
||||||
from tensorflow.python.keras import models
|
from tensorflow.python.keras import models
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras.distribute import multi_worker_testing_utils
|
from tensorflow.python.keras.distribute import multi_worker_testing_utils
|
||||||
from tensorflow.python.platform import test
|
from tensorflow.python.platform import test
|
||||||
from tensorflow.python.util import nest
|
from tensorflow.python.util import nest
|
||||||
@ -71,11 +71,11 @@ def _clone_and_build_model(model, strategy):
|
|||||||
cloned_model = models.clone_model(model)
|
cloned_model = models.clone_model(model)
|
||||||
|
|
||||||
# Compile and build model.
|
# Compile and build model.
|
||||||
if isinstance(model.optimizer, optimizers.TFOptimizer):
|
if isinstance(model.optimizer, optimizer_v1.TFOptimizer):
|
||||||
optimizer = model.optimizer
|
optimizer = model.optimizer
|
||||||
# TODO(yuefengz): figure out why the optimizer here is still a
|
# TODO(yuefengz): figure out why the optimizer here is still a
|
||||||
# TFOptimizer.
|
# TFOptimizer.
|
||||||
while isinstance(optimizer, optimizers.TFOptimizer):
|
while isinstance(optimizer, optimizer_v1.TFOptimizer):
|
||||||
optimizer = optimizer.optimizer
|
optimizer = optimizer.optimizer
|
||||||
optimizer = copy.deepcopy(optimizer)
|
optimizer = copy.deepcopy(optimizer)
|
||||||
else:
|
else:
|
||||||
|
@ -39,6 +39,7 @@ from tensorflow.python.framework import sparse_tensor
|
|||||||
from tensorflow.python.framework import tensor_shape
|
from tensorflow.python.framework import tensor_shape
|
||||||
from tensorflow.python.keras import backend
|
from tensorflow.python.keras import backend
|
||||||
from tensorflow.python.keras import callbacks as callbacks_module
|
from tensorflow.python.keras import callbacks as callbacks_module
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizers
|
||||||
from tensorflow.python.keras.distribute import distributed_training_utils as dist_utils
|
from tensorflow.python.keras.distribute import distributed_training_utils as dist_utils
|
||||||
from tensorflow.python.keras.engine import base_layer
|
from tensorflow.python.keras.engine import base_layer
|
||||||
@ -2463,7 +2464,7 @@ class Model(base_layer.Layer, version_utils.ModelVersionSelector):
|
|||||||
def _validate_compile(self, optimizer, metrics, **kwargs):
|
def _validate_compile(self, optimizer, metrics, **kwargs):
|
||||||
"""Performs validation checks for the default `compile`."""
|
"""Performs validation checks for the default `compile`."""
|
||||||
if any(
|
if any(
|
||||||
isinstance(opt, optimizers.Optimizer)
|
isinstance(opt, optimizer_v1.Optimizer)
|
||||||
for opt in nest.flatten(optimizer)):
|
for opt in nest.flatten(optimizer)):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
'`tf.compat.v1.keras` Optimizer (', optimizer, ') is '
|
'`tf.compat.v1.keras` Optimizer (', optimizer, ') is '
|
||||||
|
@ -40,6 +40,7 @@ from tensorflow.python.framework import type_spec
|
|||||||
from tensorflow.python.keras import backend as K
|
from tensorflow.python.keras import backend as K
|
||||||
from tensorflow.python.keras import losses
|
from tensorflow.python.keras import losses
|
||||||
from tensorflow.python.keras import metrics as metrics_module
|
from tensorflow.python.keras import metrics as metrics_module
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizers
|
||||||
from tensorflow.python.keras.distribute import distributed_training_utils
|
from tensorflow.python.keras.distribute import distributed_training_utils
|
||||||
from tensorflow.python.keras.distribute import distributed_training_utils_v1
|
from tensorflow.python.keras.distribute import distributed_training_utils_v1
|
||||||
@ -322,8 +323,8 @@ class Model(training_lib.Model):
|
|||||||
|
|
||||||
self._set_optimizer(optimizer)
|
self._set_optimizer(optimizer)
|
||||||
is_any_keras_optimizer_v1 = any(
|
is_any_keras_optimizer_v1 = any(
|
||||||
(isinstance(opt, optimizers.Optimizer)
|
(isinstance(opt, optimizer_v1.Optimizer)
|
||||||
and not isinstance(opt, optimizers.TFOptimizer)
|
and not isinstance(opt, optimizer_v1.TFOptimizer)
|
||||||
) for opt in nest.flatten(self.optimizer))
|
) for opt in nest.flatten(self.optimizer))
|
||||||
|
|
||||||
if is_any_keras_optimizer_v1 and ops.executing_eagerly_outside_functions():
|
if is_any_keras_optimizer_v1 and ops.executing_eagerly_outside_functions():
|
||||||
|
@ -37,7 +37,7 @@ from tensorflow.python.keras import combinations
|
|||||||
from tensorflow.python.keras import keras_parameterized
|
from tensorflow.python.keras import keras_parameterized
|
||||||
from tensorflow.python.keras import layers
|
from tensorflow.python.keras import layers
|
||||||
from tensorflow.python.keras import models
|
from tensorflow.python.keras import models
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import testing_utils
|
from tensorflow.python.keras import testing_utils
|
||||||
from tensorflow.python.keras.engine import base_layer
|
from tensorflow.python.keras.engine import base_layer
|
||||||
from tensorflow.python.keras.engine import base_layer_utils
|
from tensorflow.python.keras.engine import base_layer_utils
|
||||||
@ -854,7 +854,7 @@ class KerasModelTest(keras_parameterized.TestCase):
|
|||||||
else:
|
else:
|
||||||
error_msg = 'optimizer" must be an instance of '
|
error_msg = 'optimizer" must be an instance of '
|
||||||
with self.assertRaisesRegex(ValueError, error_msg):
|
with self.assertRaisesRegex(ValueError, error_msg):
|
||||||
model.compile(optimizers.SGD(1.), 'mse')
|
model.compile(optimizer_v1.SGD(1.), 'mse')
|
||||||
|
|
||||||
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
||||||
def test_functional_model_loss_dtype(self):
|
def test_functional_model_loss_dtype(self):
|
||||||
|
@ -22,7 +22,7 @@ from __future__ import print_function
|
|||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.keras import backend as K
|
from tensorflow.python.keras import backend as K
|
||||||
from tensorflow.python.keras import metrics as metrics_module
|
from tensorflow.python.keras import metrics as metrics_module
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras.engine import functional
|
from tensorflow.python.keras.engine import functional
|
||||||
from tensorflow.python.keras.engine import sequential
|
from tensorflow.python.keras.engine import sequential
|
||||||
from tensorflow.python.keras.engine import training
|
from tensorflow.python.keras.engine import training
|
||||||
@ -682,8 +682,8 @@ def clone_and_build_model(
|
|||||||
clone._set_inputs(input_tensors)
|
clone._set_inputs(input_tensors)
|
||||||
|
|
||||||
if compile_clone:
|
if compile_clone:
|
||||||
if isinstance(orig_optimizer, optimizers.TFOptimizer):
|
if isinstance(orig_optimizer, optimizer_v1.TFOptimizer):
|
||||||
optimizer = optimizers.TFOptimizer(
|
optimizer = optimizer_v1.TFOptimizer(
|
||||||
orig_optimizer.optimizer, optimizer_iterations)
|
orig_optimizer.optimizer, optimizer_iterations)
|
||||||
K.track_tf_optimizer(optimizer)
|
K.track_tf_optimizer(optimizer)
|
||||||
else:
|
else:
|
||||||
|
@ -32,6 +32,7 @@ from tensorflow.python.keras import backend as K
|
|||||||
from tensorflow.python.keras import keras_parameterized
|
from tensorflow.python.keras import keras_parameterized
|
||||||
from tensorflow.python.keras import metrics
|
from tensorflow.python.keras import metrics
|
||||||
from tensorflow.python.keras import models
|
from tensorflow.python.keras import models
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import testing_utils
|
from tensorflow.python.keras import testing_utils
|
||||||
from tensorflow.python.ops import array_ops
|
from tensorflow.python.ops import array_ops
|
||||||
from tensorflow.python.ops import math_ops
|
from tensorflow.python.ops import math_ops
|
||||||
@ -420,10 +421,9 @@ class TestCloneAndBuildModel(keras_parameterized.TestCase):
|
|||||||
"""Assert that two models have the same compile parameters."""
|
"""Assert that two models have the same compile parameters."""
|
||||||
|
|
||||||
self.assertEqual('mse', model.loss)
|
self.assertEqual('mse', model.loss)
|
||||||
self.assertTrue(
|
self.assertIsInstance(
|
||||||
isinstance(model.optimizer,
|
model.optimizer,
|
||||||
(keras.optimizers.RMSprop,
|
(optimizer_v1.RMSprop, keras.optimizer_v2.rmsprop.RMSprop))
|
||||||
keras.optimizer_v2.rmsprop.RMSprop)))
|
|
||||||
|
|
||||||
def _clone_and_build_test_helper(self, model, model_type):
|
def _clone_and_build_test_helper(self, model, model_type):
|
||||||
inp = np.random.random((10, 4))
|
inp = np.random.random((10, 4))
|
||||||
|
839
tensorflow/python/keras/optimizer_v1.py
Normal file
839
tensorflow/python/keras/optimizer_v1.py
Normal file
@ -0,0 +1,839 @@
|
|||||||
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
# pylint: disable=invalid-name
|
||||||
|
# pylint: disable=g-classes-have-attributes
|
||||||
|
"""Legacy v1 optimizer classes.
|
||||||
|
|
||||||
|
For more examples see the base class `tf.compat.v1.keras.optimizers.Optimizer`.
|
||||||
|
"""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from six.moves import zip # pylint: disable=redefined-builtin
|
||||||
|
|
||||||
|
from tensorflow.python.distribute import distribution_strategy_context
|
||||||
|
from tensorflow.python.eager import backprop
|
||||||
|
from tensorflow.python.framework import ops
|
||||||
|
from tensorflow.python.keras import backend as K
|
||||||
|
from tensorflow.python.ops import clip_ops
|
||||||
|
from tensorflow.python.ops import math_ops
|
||||||
|
from tensorflow.python.ops import state_ops
|
||||||
|
from tensorflow.python.training import training_util
|
||||||
|
from tensorflow.python.training.tracking import base as trackable
|
||||||
|
from tensorflow.python.util import nest
|
||||||
|
|
||||||
|
|
||||||
|
class Optimizer(object):
|
||||||
|
"""Abstract optimizer base class.
|
||||||
|
|
||||||
|
Note: this is the parent class of all optimizers, not an actual optimizer
|
||||||
|
that can be used for training models.
|
||||||
|
|
||||||
|
All Keras optimizers support the following keyword arguments:
|
||||||
|
|
||||||
|
clipnorm: float >= 0. Gradients will be clipped
|
||||||
|
when their L2 norm exceeds this value.
|
||||||
|
clipvalue: float >= 0. Gradients will be clipped
|
||||||
|
when their absolute value exceeds this value.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
allowed_kwargs = {'clipnorm', 'clipvalue'}
|
||||||
|
for k in kwargs:
|
||||||
|
if k not in allowed_kwargs:
|
||||||
|
raise TypeError('Unexpected keyword argument '
|
||||||
|
'passed to optimizer: ' + str(k))
|
||||||
|
# checks that clipnorm >= 0 and clipvalue >= 0
|
||||||
|
if kwargs[k] < 0:
|
||||||
|
raise ValueError('Expected {} >= 0, received: {}'.format(k, kwargs[k]))
|
||||||
|
self.__dict__.update(kwargs)
|
||||||
|
self.updates = []
|
||||||
|
self.weights = []
|
||||||
|
|
||||||
|
# Set this to False, indicating `apply_gradients` does not take the
|
||||||
|
# `experimental_aggregate_gradients` argument.
|
||||||
|
_HAS_AGGREGATE_GRAD = False
|
||||||
|
|
||||||
|
def _create_all_weights(self, params):
|
||||||
|
"""Creates and sets all optimizer weights.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params: list or tuple of `Variable` objects that will be minimized
|
||||||
|
using this optimizer.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Specific weight values that are used in `get_updates`
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def get_gradients(self, loss, params):
|
||||||
|
"""Returns gradients of `loss` with respect to `params`.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
loss: Loss tensor.
|
||||||
|
params: List of variables.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of gradient tensors.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: In case any gradient cannot be computed (e.g. if gradient
|
||||||
|
function not implemented).
|
||||||
|
"""
|
||||||
|
grads = K.gradients(loss, params)
|
||||||
|
if any(g is None for g in grads):
|
||||||
|
raise ValueError('An operation has `None` for gradient. '
|
||||||
|
'Please make sure that all of your ops have a '
|
||||||
|
'gradient defined (i.e. are differentiable). '
|
||||||
|
'Common ops without gradient: '
|
||||||
|
'K.argmax, K.round, K.eval.')
|
||||||
|
if hasattr(self, 'clipnorm'):
|
||||||
|
grads = [clip_ops.clip_by_norm(g, self.clipnorm) for g in grads]
|
||||||
|
if hasattr(self, 'clipvalue'):
|
||||||
|
grads = [
|
||||||
|
clip_ops.clip_by_value(g, -self.clipvalue, self.clipvalue)
|
||||||
|
for g in grads
|
||||||
|
]
|
||||||
|
return grads
|
||||||
|
|
||||||
|
def set_weights(self, weights):
|
||||||
|
"""Sets the weights of the optimizer, from Numpy arrays.
|
||||||
|
|
||||||
|
Should only be called after computing the gradients
|
||||||
|
(otherwise the optimizer has no weights).
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
weights: a list of Numpy arrays. The number of arrays and their shape
|
||||||
|
must match number of the dimensions of the weights of the optimizer
|
||||||
|
(i.e. it should match the output of `get_weights`).
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: in case of incompatible weight shapes.
|
||||||
|
"""
|
||||||
|
params = self.weights
|
||||||
|
if len(params) != len(weights):
|
||||||
|
raise ValueError('Length of the specified weight list (' +
|
||||||
|
str(len(weights)) +
|
||||||
|
') does not match the number of weights '
|
||||||
|
'of the optimizer (' + str(len(params)) + ')')
|
||||||
|
weight_value_tuples = []
|
||||||
|
param_values = K.batch_get_value(params)
|
||||||
|
for pv, p, w in zip(param_values, params, weights):
|
||||||
|
if pv.shape != w.shape:
|
||||||
|
raise ValueError('Optimizer weight shape ' + str(pv.shape) +
|
||||||
|
' not compatible with '
|
||||||
|
'provided weight shape ' + str(w.shape))
|
||||||
|
weight_value_tuples.append((p, w))
|
||||||
|
K.batch_set_value(weight_value_tuples)
|
||||||
|
|
||||||
|
def get_weights(self):
|
||||||
|
"""Returns the current value of the weights of the optimizer.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A list of numpy arrays.
|
||||||
|
"""
|
||||||
|
return K.batch_get_value(self.weights)
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {}
|
||||||
|
if hasattr(self, 'clipnorm'):
|
||||||
|
config['clipnorm'] = self.clipnorm
|
||||||
|
if hasattr(self, 'clipvalue'):
|
||||||
|
config['clipvalue'] = self.clipvalue
|
||||||
|
return config
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_config(cls, config):
|
||||||
|
return cls(**config)
|
||||||
|
|
||||||
|
|
||||||
|
class SGD(Optimizer):
|
||||||
|
"""Stochastic gradient descent optimizer.
|
||||||
|
|
||||||
|
Includes support for momentum,
|
||||||
|
learning rate decay, and Nesterov momentum.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
lr: float >= 0. Learning rate.
|
||||||
|
momentum: float >= 0. Parameter that accelerates SGD in the relevant
|
||||||
|
direction and dampens oscillations.
|
||||||
|
decay: float >= 0. Learning rate decay over each update.
|
||||||
|
nesterov: boolean. Whether to apply Nesterov momentum.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, lr=0.01, momentum=0., decay=0., nesterov=False, **kwargs):
|
||||||
|
super(SGD, self).__init__(**kwargs)
|
||||||
|
with K.name_scope(self.__class__.__name__):
|
||||||
|
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||||
|
self.lr = K.variable(lr, name='lr')
|
||||||
|
self.momentum = K.variable(momentum, name='momentum')
|
||||||
|
self.decay = K.variable(decay, name='decay')
|
||||||
|
self.initial_decay = decay
|
||||||
|
self.nesterov = nesterov
|
||||||
|
|
||||||
|
def _create_all_weights(self, params):
|
||||||
|
shapes = [K.int_shape(p) for p in params]
|
||||||
|
moments = [K.zeros(shape) for shape in shapes]
|
||||||
|
self.weights = [self.iterations] + moments
|
||||||
|
return moments
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
grads = self.get_gradients(loss, params)
|
||||||
|
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
||||||
|
|
||||||
|
lr = self.lr
|
||||||
|
if self.initial_decay > 0:
|
||||||
|
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
||||||
|
1. /
|
||||||
|
(1. +
|
||||||
|
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
||||||
|
# momentum
|
||||||
|
moments = self._create_all_weights(params)
|
||||||
|
for p, g, m in zip(params, grads, moments):
|
||||||
|
v = self.momentum * m - lr * g # velocity
|
||||||
|
self.updates.append(state_ops.assign(m, v))
|
||||||
|
|
||||||
|
if self.nesterov:
|
||||||
|
new_p = p + self.momentum * v - lr * g
|
||||||
|
else:
|
||||||
|
new_p = p + v
|
||||||
|
|
||||||
|
# Apply constraints.
|
||||||
|
if getattr(p, 'constraint', None) is not None:
|
||||||
|
new_p = p.constraint(new_p)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(p, new_p))
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {
|
||||||
|
'lr': float(K.get_value(self.lr)),
|
||||||
|
'momentum': float(K.get_value(self.momentum)),
|
||||||
|
'decay': float(K.get_value(self.decay)),
|
||||||
|
'nesterov': self.nesterov
|
||||||
|
}
|
||||||
|
base_config = super(SGD, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
|
||||||
|
class RMSprop(Optimizer):
|
||||||
|
"""RMSProp optimizer.
|
||||||
|
|
||||||
|
It is recommended to leave the parameters of this optimizer
|
||||||
|
at their default values
|
||||||
|
(except the learning rate, which can be freely tuned).
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
lr: float >= 0. Learning rate.
|
||||||
|
rho: float >= 0.
|
||||||
|
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
||||||
|
decay: float >= 0. Learning rate decay over each update.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, lr=0.001, rho=0.9, epsilon=None, decay=0., **kwargs):
|
||||||
|
super(RMSprop, self).__init__(**kwargs)
|
||||||
|
with K.name_scope(self.__class__.__name__):
|
||||||
|
self.lr = K.variable(lr, name='lr')
|
||||||
|
self.rho = K.variable(rho, name='rho')
|
||||||
|
self.decay = K.variable(decay, name='decay')
|
||||||
|
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||||
|
if epsilon is None:
|
||||||
|
epsilon = K.epsilon()
|
||||||
|
self.epsilon = epsilon
|
||||||
|
self.initial_decay = decay
|
||||||
|
|
||||||
|
def _create_all_weights(self, params):
|
||||||
|
accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
|
||||||
|
self.weights = accumulators
|
||||||
|
return accumulators
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
grads = self.get_gradients(loss, params)
|
||||||
|
accumulators = self._create_all_weights(params)
|
||||||
|
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
||||||
|
|
||||||
|
lr = self.lr
|
||||||
|
if self.initial_decay > 0:
|
||||||
|
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
||||||
|
1. /
|
||||||
|
(1. +
|
||||||
|
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
||||||
|
|
||||||
|
for p, g, a in zip(params, grads, accumulators):
|
||||||
|
# update accumulator
|
||||||
|
new_a = self.rho * a + (1. - self.rho) * math_ops.square(g)
|
||||||
|
self.updates.append(state_ops.assign(a, new_a))
|
||||||
|
new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)
|
||||||
|
|
||||||
|
# Apply constraints.
|
||||||
|
if getattr(p, 'constraint', None) is not None:
|
||||||
|
new_p = p.constraint(new_p)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(p, new_p))
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {
|
||||||
|
'lr': float(K.get_value(self.lr)),
|
||||||
|
'rho': float(K.get_value(self.rho)),
|
||||||
|
'decay': float(K.get_value(self.decay)),
|
||||||
|
'epsilon': self.epsilon
|
||||||
|
}
|
||||||
|
base_config = super(RMSprop, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
|
||||||
|
class Adagrad(Optimizer):
|
||||||
|
"""Adagrad optimizer.
|
||||||
|
|
||||||
|
Adagrad is an optimizer with parameter-specific learning rates,
|
||||||
|
which are adapted relative to how frequently a parameter gets
|
||||||
|
updated during training. The more updates a parameter receives,
|
||||||
|
the smaller the updates.
|
||||||
|
|
||||||
|
It is recommended to leave the parameters of this optimizer
|
||||||
|
at their default values.
|
||||||
|
|
||||||
|
# Arguments
|
||||||
|
lr: float >= 0. Initial learning rate.
|
||||||
|
epsilon: float >= 0. If `None`, defaults to `K.epsilon()`.
|
||||||
|
decay: float >= 0. Learning rate decay over each update.
|
||||||
|
|
||||||
|
# References
|
||||||
|
- [Adaptive Subgradient Methods for Online Learning and Stochastic
|
||||||
|
Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, lr=0.01, epsilon=None, decay=0., **kwargs):
|
||||||
|
super(Adagrad, self).__init__(**kwargs)
|
||||||
|
with K.name_scope(self.__class__.__name__):
|
||||||
|
self.lr = K.variable(lr, name='lr')
|
||||||
|
self.decay = K.variable(decay, name='decay')
|
||||||
|
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||||
|
if epsilon is None:
|
||||||
|
epsilon = K.epsilon()
|
||||||
|
self.epsilon = epsilon
|
||||||
|
self.initial_decay = decay
|
||||||
|
|
||||||
|
def _create_all_weights(self, params):
|
||||||
|
shapes = [K.int_shape(p) for p in params]
|
||||||
|
accumulators = [K.zeros(shape) for shape in shapes]
|
||||||
|
self.weights = accumulators
|
||||||
|
return accumulators
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
grads = self.get_gradients(loss, params)
|
||||||
|
accumulators = self._create_all_weights(params)
|
||||||
|
|
||||||
|
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
||||||
|
|
||||||
|
lr = self.lr
|
||||||
|
if self.initial_decay > 0:
|
||||||
|
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
||||||
|
1. /
|
||||||
|
(1. +
|
||||||
|
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
||||||
|
|
||||||
|
for p, g, a in zip(params, grads, accumulators):
|
||||||
|
new_a = a + math_ops.square(g) # update accumulator
|
||||||
|
self.updates.append(state_ops.assign(a, new_a))
|
||||||
|
new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)
|
||||||
|
|
||||||
|
# Apply constraints.
|
||||||
|
if getattr(p, 'constraint', None) is not None:
|
||||||
|
new_p = p.constraint(new_p)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(p, new_p))
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {
|
||||||
|
'lr': float(K.get_value(self.lr)),
|
||||||
|
'decay': float(K.get_value(self.decay)),
|
||||||
|
'epsilon': self.epsilon
|
||||||
|
}
|
||||||
|
base_config = super(Adagrad, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
|
||||||
|
class Adadelta(Optimizer):
|
||||||
|
"""Adadelta optimizer.
|
||||||
|
|
||||||
|
Adadelta is a more robust extension of Adagrad
|
||||||
|
that adapts learning rates based on a moving window of gradient updates,
|
||||||
|
instead of accumulating all past gradients. This way, Adadelta continues
|
||||||
|
learning even when many updates have been done. Compared to Adagrad, in the
|
||||||
|
original version of Adadelta you don't have to set an initial learning
|
||||||
|
rate. In this version, initial learning rate and decay factor can
|
||||||
|
be set, as in most other Keras optimizers.
|
||||||
|
|
||||||
|
It is recommended to leave the parameters of this optimizer
|
||||||
|
at their default values.
|
||||||
|
|
||||||
|
# Arguments
|
||||||
|
lr: float >= 0. Initial learning rate, defaults to 1.
|
||||||
|
It is recommended to leave it at the default value.
|
||||||
|
rho: float >= 0. Adadelta decay factor, corresponding to fraction of
|
||||||
|
gradient to keep at each time step.
|
||||||
|
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
||||||
|
decay: float >= 0. Initial learning rate decay.
|
||||||
|
|
||||||
|
# References
|
||||||
|
- [Adadelta - an adaptive learning rate
|
||||||
|
method](http://arxiv.org/abs/1212.5701)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, lr=1.0, rho=0.95, epsilon=None, decay=0., **kwargs):
|
||||||
|
super(Adadelta, self).__init__(**kwargs)
|
||||||
|
with K.name_scope(self.__class__.__name__):
|
||||||
|
self.lr = K.variable(lr, name='lr')
|
||||||
|
self.decay = K.variable(decay, name='decay')
|
||||||
|
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||||
|
if epsilon is None:
|
||||||
|
epsilon = K.epsilon()
|
||||||
|
self.rho = rho
|
||||||
|
self.epsilon = epsilon
|
||||||
|
self.initial_decay = decay
|
||||||
|
|
||||||
|
def _create_all_weights(self, params):
|
||||||
|
shapes = [K.int_shape(p) for p in params]
|
||||||
|
accumulators = [K.zeros(shape) for shape in shapes]
|
||||||
|
delta_accumulators = [K.zeros(shape) for shape in shapes]
|
||||||
|
self.weights = accumulators + delta_accumulators
|
||||||
|
return accumulators, delta_accumulators
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
grads = self.get_gradients(loss, params)
|
||||||
|
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
||||||
|
accumulators, delta_accumulators = self._create_all_weights(params)
|
||||||
|
|
||||||
|
lr = self.lr
|
||||||
|
if self.initial_decay > 0:
|
||||||
|
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
||||||
|
1. /
|
||||||
|
(1. +
|
||||||
|
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
||||||
|
|
||||||
|
for p, g, a, d_a in zip(params, grads, accumulators, delta_accumulators):
|
||||||
|
# update accumulator
|
||||||
|
new_a = self.rho * a + (1. - self.rho) * math_ops.square(g)
|
||||||
|
self.updates.append(state_ops.assign(a, new_a))
|
||||||
|
|
||||||
|
# use the new accumulator and the *old* delta_accumulator
|
||||||
|
update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon)
|
||||||
|
new_p = p - lr * update
|
||||||
|
|
||||||
|
# Apply constraints.
|
||||||
|
if getattr(p, 'constraint', None) is not None:
|
||||||
|
new_p = p.constraint(new_p)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(p, new_p))
|
||||||
|
|
||||||
|
# update delta_accumulator
|
||||||
|
new_d_a = self.rho * d_a + (1 - self.rho) * math_ops.square(update)
|
||||||
|
self.updates.append(state_ops.assign(d_a, new_d_a))
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {
|
||||||
|
'lr': float(K.get_value(self.lr)),
|
||||||
|
'rho': self.rho,
|
||||||
|
'decay': float(K.get_value(self.decay)),
|
||||||
|
'epsilon': self.epsilon
|
||||||
|
}
|
||||||
|
base_config = super(Adadelta, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
|
||||||
|
class Adam(Optimizer):
|
||||||
|
"""Adam optimizer.
|
||||||
|
|
||||||
|
Default parameters follow those provided in the original paper.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
lr: float >= 0. Learning rate.
|
||||||
|
beta_1: float, 0 < beta < 1. Generally close to 1.
|
||||||
|
beta_2: float, 0 < beta < 1. Generally close to 1.
|
||||||
|
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
||||||
|
decay: float >= 0. Learning rate decay over each update.
|
||||||
|
amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm
|
||||||
|
from the paper "On the Convergence of Adam and Beyond".
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
lr=0.001,
|
||||||
|
beta_1=0.9,
|
||||||
|
beta_2=0.999,
|
||||||
|
epsilon=None,
|
||||||
|
decay=0.,
|
||||||
|
amsgrad=False,
|
||||||
|
**kwargs):
|
||||||
|
super(Adam, self).__init__(**kwargs)
|
||||||
|
with K.name_scope(self.__class__.__name__):
|
||||||
|
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||||
|
self.lr = K.variable(lr, name='lr')
|
||||||
|
self.beta_1 = K.variable(beta_1, name='beta_1')
|
||||||
|
self.beta_2 = K.variable(beta_2, name='beta_2')
|
||||||
|
self.decay = K.variable(decay, name='decay')
|
||||||
|
if epsilon is None:
|
||||||
|
epsilon = K.epsilon()
|
||||||
|
self.epsilon = epsilon
|
||||||
|
self.initial_decay = decay
|
||||||
|
self.amsgrad = amsgrad
|
||||||
|
|
||||||
|
def _create_all_weights(self, params):
|
||||||
|
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
|
||||||
|
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
|
||||||
|
if self.amsgrad:
|
||||||
|
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
|
||||||
|
else:
|
||||||
|
vhats = [K.zeros(1) for _ in params]
|
||||||
|
self.weights = [self.iterations] + ms + vs + vhats
|
||||||
|
return ms, vs, vhats
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
grads = self.get_gradients(loss, params)
|
||||||
|
self.updates = []
|
||||||
|
|
||||||
|
lr = self.lr
|
||||||
|
if self.initial_decay > 0:
|
||||||
|
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
||||||
|
1. /
|
||||||
|
(1. +
|
||||||
|
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
||||||
|
|
||||||
|
with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
|
||||||
|
t = math_ops.cast(self.iterations, K.floatx())
|
||||||
|
lr_t = lr * (
|
||||||
|
K.sqrt(1. - math_ops.pow(self.beta_2, t)) /
|
||||||
|
(1. - math_ops.pow(self.beta_1, t)))
|
||||||
|
|
||||||
|
ms, vs, vhats = self._create_all_weights(params)
|
||||||
|
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
|
||||||
|
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
|
||||||
|
v_t = (self.beta_2 * v) + (1. - self.beta_2) * math_ops.square(g)
|
||||||
|
if self.amsgrad:
|
||||||
|
vhat_t = math_ops.maximum(vhat, v_t)
|
||||||
|
p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
|
||||||
|
self.updates.append(state_ops.assign(vhat, vhat_t))
|
||||||
|
else:
|
||||||
|
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(m, m_t))
|
||||||
|
self.updates.append(state_ops.assign(v, v_t))
|
||||||
|
new_p = p_t
|
||||||
|
|
||||||
|
# Apply constraints.
|
||||||
|
if getattr(p, 'constraint', None) is not None:
|
||||||
|
new_p = p.constraint(new_p)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(p, new_p))
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {
|
||||||
|
'lr': float(K.get_value(self.lr)),
|
||||||
|
'beta_1': float(K.get_value(self.beta_1)),
|
||||||
|
'beta_2': float(K.get_value(self.beta_2)),
|
||||||
|
'decay': float(K.get_value(self.decay)),
|
||||||
|
'epsilon': self.epsilon,
|
||||||
|
'amsgrad': self.amsgrad
|
||||||
|
}
|
||||||
|
base_config = super(Adam, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
|
||||||
|
class Adamax(Optimizer):
|
||||||
|
"""Adamax optimizer from Adam paper's Section 7.
|
||||||
|
|
||||||
|
It is a variant of Adam based on the infinity norm.
|
||||||
|
Default parameters follow those provided in the paper.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
lr: float >= 0. Learning rate.
|
||||||
|
beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
|
||||||
|
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
||||||
|
decay: float >= 0. Learning rate decay over each update.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
lr=0.002,
|
||||||
|
beta_1=0.9,
|
||||||
|
beta_2=0.999,
|
||||||
|
epsilon=None,
|
||||||
|
decay=0.,
|
||||||
|
**kwargs):
|
||||||
|
super(Adamax, self).__init__(**kwargs)
|
||||||
|
with K.name_scope(self.__class__.__name__):
|
||||||
|
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||||
|
self.lr = K.variable(lr, name='lr')
|
||||||
|
self.beta_1 = K.variable(beta_1, name='beta_1')
|
||||||
|
self.beta_2 = K.variable(beta_2, name='beta_2')
|
||||||
|
self.decay = K.variable(decay, name='decay')
|
||||||
|
if epsilon is None:
|
||||||
|
epsilon = K.epsilon()
|
||||||
|
self.epsilon = epsilon
|
||||||
|
self.initial_decay = decay
|
||||||
|
|
||||||
|
def _create_all_weights(self, params):
|
||||||
|
|
||||||
|
shapes = [K.int_shape(p) for p in params]
|
||||||
|
# zero init of 1st moment
|
||||||
|
ms = [K.zeros(shape) for shape in shapes]
|
||||||
|
# zero init of exponentially weighted infinity norm
|
||||||
|
us = [K.zeros(shape) for shape in shapes]
|
||||||
|
self.weights = [self.iterations] + ms + us
|
||||||
|
return ms, us
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
grads = self.get_gradients(loss, params)
|
||||||
|
self.updates = []
|
||||||
|
|
||||||
|
lr = self.lr
|
||||||
|
if self.initial_decay > 0:
|
||||||
|
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
||||||
|
1. /
|
||||||
|
(1. +
|
||||||
|
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
||||||
|
|
||||||
|
with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
|
||||||
|
t = math_ops.cast(self.iterations, K.floatx())
|
||||||
|
lr_t = lr / (1. - math_ops.pow(self.beta_1, t))
|
||||||
|
|
||||||
|
ms, us = self._create_all_weights(params)
|
||||||
|
|
||||||
|
for p, g, m, u in zip(params, grads, ms, us):
|
||||||
|
|
||||||
|
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
|
||||||
|
u_t = math_ops.maximum(self.beta_2 * u, math_ops.abs(g))
|
||||||
|
p_t = p - lr_t * m_t / (u_t + self.epsilon)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(m, m_t))
|
||||||
|
self.updates.append(state_ops.assign(u, u_t))
|
||||||
|
new_p = p_t
|
||||||
|
|
||||||
|
# Apply constraints.
|
||||||
|
if getattr(p, 'constraint', None) is not None:
|
||||||
|
new_p = p.constraint(new_p)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(p, new_p))
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {
|
||||||
|
'lr': float(K.get_value(self.lr)),
|
||||||
|
'beta_1': float(K.get_value(self.beta_1)),
|
||||||
|
'beta_2': float(K.get_value(self.beta_2)),
|
||||||
|
'decay': float(K.get_value(self.decay)),
|
||||||
|
'epsilon': self.epsilon
|
||||||
|
}
|
||||||
|
base_config = super(Adamax, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
|
||||||
|
class Nadam(Optimizer):
|
||||||
|
"""Nesterov Adam optimizer.
|
||||||
|
|
||||||
|
Much like Adam is essentially RMSprop with momentum,
|
||||||
|
Nadam is Adam RMSprop with Nesterov momentum.
|
||||||
|
|
||||||
|
Default parameters follow those provided in the paper.
|
||||||
|
It is recommended to leave the parameters of this optimizer
|
||||||
|
at their default values.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
lr: float >= 0. Learning rate.
|
||||||
|
beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
|
||||||
|
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
lr=0.002,
|
||||||
|
beta_1=0.9,
|
||||||
|
beta_2=0.999,
|
||||||
|
epsilon=None,
|
||||||
|
schedule_decay=0.004,
|
||||||
|
**kwargs):
|
||||||
|
super(Nadam, self).__init__(**kwargs)
|
||||||
|
with K.name_scope(self.__class__.__name__):
|
||||||
|
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||||
|
self.m_schedule = K.variable(1., name='m_schedule')
|
||||||
|
self.lr = K.variable(lr, name='lr')
|
||||||
|
self.beta_1 = K.variable(beta_1, name='beta_1')
|
||||||
|
self.beta_2 = K.variable(beta_2, name='beta_2')
|
||||||
|
if epsilon is None:
|
||||||
|
epsilon = K.epsilon()
|
||||||
|
self.epsilon = epsilon
|
||||||
|
self.schedule_decay = schedule_decay
|
||||||
|
|
||||||
|
def _create_all_weights(self, params):
|
||||||
|
shapes = [K.int_shape(p) for p in params]
|
||||||
|
ms = [K.zeros(shape) for shape in shapes]
|
||||||
|
vs = [K.zeros(shape) for shape in shapes]
|
||||||
|
|
||||||
|
self.weights = [self.iterations, self.m_schedule] + ms + vs
|
||||||
|
return ms, vs
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
grads = self.get_gradients(loss, params)
|
||||||
|
self.updates = []
|
||||||
|
|
||||||
|
with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
|
||||||
|
t = math_ops.cast(self.iterations, K.floatx())
|
||||||
|
|
||||||
|
# Due to the recommendations in [2], i.e. warming momentum schedule
|
||||||
|
momentum_cache_t = self.beta_1 * (
|
||||||
|
1. - 0.5 *
|
||||||
|
(math_ops.pow(K.cast_to_floatx(0.96), t * self.schedule_decay)))
|
||||||
|
momentum_cache_t_1 = self.beta_1 * (
|
||||||
|
1. - 0.5 *
|
||||||
|
(math_ops.pow(K.cast_to_floatx(0.96), (t + 1) * self.schedule_decay)))
|
||||||
|
m_schedule_new = self.m_schedule * momentum_cache_t
|
||||||
|
m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
|
||||||
|
self.updates.append((self.m_schedule, m_schedule_new))
|
||||||
|
|
||||||
|
ms, vs = self._create_all_weights(params)
|
||||||
|
|
||||||
|
for p, g, m, v in zip(params, grads, ms, vs):
|
||||||
|
# the following equations given in [1]
|
||||||
|
g_prime = g / (1. - m_schedule_new)
|
||||||
|
m_t = self.beta_1 * m + (1. - self.beta_1) * g
|
||||||
|
m_t_prime = m_t / (1. - m_schedule_next)
|
||||||
|
v_t = self.beta_2 * v + (1. - self.beta_2) * math_ops.square(g)
|
||||||
|
v_t_prime = v_t / (1. - math_ops.pow(self.beta_2, t))
|
||||||
|
m_t_bar = (1. -
|
||||||
|
momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(m, m_t))
|
||||||
|
self.updates.append(state_ops.assign(v, v_t))
|
||||||
|
|
||||||
|
p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)
|
||||||
|
new_p = p_t
|
||||||
|
|
||||||
|
# Apply constraints.
|
||||||
|
if getattr(p, 'constraint', None) is not None:
|
||||||
|
new_p = p.constraint(new_p)
|
||||||
|
|
||||||
|
self.updates.append(state_ops.assign(p, new_p))
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
config = {
|
||||||
|
'lr': float(K.get_value(self.lr)),
|
||||||
|
'beta_1': float(K.get_value(self.beta_1)),
|
||||||
|
'beta_2': float(K.get_value(self.beta_2)),
|
||||||
|
'epsilon': self.epsilon,
|
||||||
|
'schedule_decay': self.schedule_decay
|
||||||
|
}
|
||||||
|
base_config = super(Nadam, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
|
||||||
|
class TFOptimizer(Optimizer, trackable.Trackable):
|
||||||
|
"""Wrapper class for native TensorFlow optimizers."""
|
||||||
|
|
||||||
|
def __init__(self, optimizer, iterations=None): # pylint: disable=super-init-not-called
|
||||||
|
self.optimizer = optimizer
|
||||||
|
self._track_trackable(optimizer, name='optimizer')
|
||||||
|
if iterations is None:
|
||||||
|
with K.name_scope(self.__class__.__name__):
|
||||||
|
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||||
|
else:
|
||||||
|
self.iterations = iterations
|
||||||
|
self._track_trackable(self.iterations, name='global_step')
|
||||||
|
|
||||||
|
def _clip_gradients(self, grads):
|
||||||
|
"""Clip gradients according to the clipnorm and clipvalue attributes."""
|
||||||
|
# TFOptimizer wrapper has no gradient clipping options.
|
||||||
|
return grads
|
||||||
|
|
||||||
|
def minimize(self, loss, var_list, grad_loss=None, tape=None):
|
||||||
|
"""Mimics the `OptimizerV2.minimize` API."""
|
||||||
|
if not callable(loss) and tape is None:
|
||||||
|
raise ValueError('`tape` is required when a `Tensor` loss is passed.')
|
||||||
|
tape = tape if tape is not None else backprop.GradientTape()
|
||||||
|
|
||||||
|
if callable(loss):
|
||||||
|
with tape:
|
||||||
|
if not callable(var_list):
|
||||||
|
tape.watch(var_list)
|
||||||
|
loss = loss()
|
||||||
|
if callable(var_list):
|
||||||
|
var_list = var_list()
|
||||||
|
|
||||||
|
var_list = nest.flatten(var_list)
|
||||||
|
if var_list:
|
||||||
|
grads = tape.gradient(loss, var_list, grad_loss)
|
||||||
|
grads_and_vars = list(zip(grads, var_list))
|
||||||
|
self.apply_gradients(grads_and_vars)
|
||||||
|
|
||||||
|
def apply_gradients(self, grads_and_vars):
|
||||||
|
self.optimizer.apply_gradients(grads_and_vars, global_step=self.iterations)
|
||||||
|
|
||||||
|
def get_grads(self, loss, params):
|
||||||
|
return self.optimizer.compute_gradients(loss, params)
|
||||||
|
|
||||||
|
def get_updates(self, loss, params):
|
||||||
|
if distribution_strategy_context.has_strategy():
|
||||||
|
self.updates = []
|
||||||
|
|
||||||
|
if not params:
|
||||||
|
# After the model vars have been created, the second call to get_updates
|
||||||
|
# is called with params as an empty list. This ensures that we call
|
||||||
|
# compute_gradients with params=None.
|
||||||
|
grads = self.optimizer.compute_gradients(loss)
|
||||||
|
else:
|
||||||
|
grads = self.optimizer.compute_gradients(loss, params)
|
||||||
|
global_step = training_util.get_global_step()
|
||||||
|
opt_update = self.optimizer.apply_gradients(grads, global_step)
|
||||||
|
else:
|
||||||
|
if not params:
|
||||||
|
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
# Updates list starts out empty because the iterations variable is
|
||||||
|
# incremented in optimizer.apply_gradients()
|
||||||
|
self.updates = []
|
||||||
|
grads = self.optimizer.compute_gradients(loss, params)
|
||||||
|
opt_update = self.optimizer.apply_gradients(
|
||||||
|
grads, global_step=self.iterations)
|
||||||
|
|
||||||
|
self.updates.append(opt_update)
|
||||||
|
return self.updates
|
||||||
|
|
||||||
|
@property
|
||||||
|
def weights(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def from_config(self, config):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
# Aliases.
|
||||||
|
|
||||||
|
sgd = SGD
|
||||||
|
rmsprop = RMSprop
|
||||||
|
adagrad = Adagrad
|
||||||
|
adadelta = Adadelta
|
||||||
|
adam = Adam
|
||||||
|
adamax = Adamax
|
||||||
|
nadam = Nadam
|
@ -26,7 +26,7 @@ from tensorflow.python.framework import constant_op
|
|||||||
from tensorflow.python.framework import dtypes
|
from tensorflow.python.framework import dtypes
|
||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.keras import combinations
|
from tensorflow.python.keras import combinations
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras.optimizer_v2 import adam
|
from tensorflow.python.keras.optimizer_v2 import adam
|
||||||
from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule
|
from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule
|
||||||
from tensorflow.python.ops import array_ops
|
from tensorflow.python.ops import array_ops
|
||||||
@ -537,7 +537,7 @@ class AdamOptimizerTest(test.TestCase, parameterized.TestCase):
|
|||||||
self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))
|
self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))
|
||||||
|
|
||||||
def testSetWeightsFromV1AdamWithoutMinimize(self):
|
def testSetWeightsFromV1AdamWithoutMinimize(self):
|
||||||
keras_v1_adam = optimizers.Adam()
|
keras_v1_adam = optimizer_v1.Adam()
|
||||||
keras_v2_adam = adam.Adam()
|
keras_v2_adam = adam.Adam()
|
||||||
keras_v2_adam.set_weights(keras_v1_adam.get_weights())
|
keras_v2_adam.set_weights(keras_v1_adam.get_weights())
|
||||||
keras_v1_iteration = keras_v1_adam.iterations
|
keras_v1_iteration = keras_v1_adam.iterations
|
||||||
|
@ -35,7 +35,7 @@ from tensorflow.python.keras import callbacks
|
|||||||
from tensorflow.python.keras import combinations
|
from tensorflow.python.keras import combinations
|
||||||
from tensorflow.python.keras import keras_parameterized
|
from tensorflow.python.keras import keras_parameterized
|
||||||
from tensorflow.python.keras import losses
|
from tensorflow.python.keras import losses
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import testing_utils
|
from tensorflow.python.keras import testing_utils
|
||||||
from tensorflow.python.keras.engine import input_layer
|
from tensorflow.python.keras.engine import input_layer
|
||||||
from tensorflow.python.keras.engine import sequential
|
from tensorflow.python.keras.engine import sequential
|
||||||
@ -739,42 +739,42 @@ class OptimizersCompatibilityTest(keras_parameterized.TestCase):
|
|||||||
rtol=1e-5, atol=1e-5)
|
rtol=1e-5, atol=1e-5)
|
||||||
|
|
||||||
def testAdadeltaCompatibility(self):
|
def testAdadeltaCompatibility(self):
|
||||||
opt_v1 = optimizers.Adadelta(lr=0.01)
|
opt_v1 = optimizer_v1.Adadelta(lr=0.01)
|
||||||
opt_v2 = adadelta.Adadelta(learning_rate=0.01)
|
opt_v2 = adadelta.Adadelta(learning_rate=0.01)
|
||||||
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
||||||
|
|
||||||
def testAdagradCompatibility(self):
|
def testAdagradCompatibility(self):
|
||||||
opt_v1 = optimizers.Adagrad(lr=0.01)
|
opt_v1 = optimizer_v1.Adagrad(lr=0.01)
|
||||||
opt_v2 = adagrad.Adagrad(learning_rate=0.01)
|
opt_v2 = adagrad.Adagrad(learning_rate=0.01)
|
||||||
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
||||||
|
|
||||||
def testAdamCompatibility(self):
|
def testAdamCompatibility(self):
|
||||||
opt_v1 = optimizers.Adam()
|
opt_v1 = optimizer_v1.Adam()
|
||||||
opt_v2 = adam.Adam()
|
opt_v2 = adam.Adam()
|
||||||
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
||||||
|
|
||||||
def testAdamaxCompatibility(self):
|
def testAdamaxCompatibility(self):
|
||||||
opt_v1 = optimizers.Adamax(lr=0.01)
|
opt_v1 = optimizer_v1.Adamax(lr=0.01)
|
||||||
opt_v2 = adamax.Adamax(learning_rate=0.01)
|
opt_v2 = adamax.Adamax(learning_rate=0.01)
|
||||||
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
||||||
|
|
||||||
def testNadamCompatibility(self):
|
def testNadamCompatibility(self):
|
||||||
opt_v1 = optimizers.Nadam(lr=0.001)
|
opt_v1 = optimizer_v1.Nadam(lr=0.001)
|
||||||
opt_v2 = nadam.Nadam(learning_rate=0.001)
|
opt_v2 = nadam.Nadam(learning_rate=0.001)
|
||||||
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
||||||
|
|
||||||
def testMomentumCompatibility(self):
|
def testMomentumCompatibility(self):
|
||||||
opt_v1 = optimizers.SGD(lr=0.01, momentum=0.9)
|
opt_v1 = optimizer_v1.SGD(lr=0.01, momentum=0.9)
|
||||||
opt_v2 = gradient_descent.SGD(learning_rate=0.01, momentum=0.9)
|
opt_v2 = gradient_descent.SGD(learning_rate=0.01, momentum=0.9)
|
||||||
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
||||||
|
|
||||||
def testRMSpropCompatibility(self):
|
def testRMSpropCompatibility(self):
|
||||||
opt_v1 = optimizers.RMSprop()
|
opt_v1 = optimizer_v1.RMSprop()
|
||||||
opt_v2 = rmsprop.RMSprop()
|
opt_v2 = rmsprop.RMSprop()
|
||||||
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
self._testOptimizersCompatibility(opt_v1, opt_v2)
|
||||||
|
|
||||||
def testSGDCompatibility(self):
|
def testSGDCompatibility(self):
|
||||||
opt_v1 = optimizers.SGD(lr=0.01)
|
opt_v1 = optimizer_v1.SGD(lr=0.01)
|
||||||
opt_v2 = gradient_descent.SGD(learning_rate=0.01)
|
opt_v2 = gradient_descent.SGD(learning_rate=0.01)
|
||||||
self._testOptimizersCompatibility(opt_v1, opt_v2, False)
|
self._testOptimizersCompatibility(opt_v1, opt_v2, False)
|
||||||
|
|
||||||
@ -804,7 +804,7 @@ class OptimizersCompatibilityTest(keras_parameterized.TestCase):
|
|||||||
num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim)
|
num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim)
|
||||||
model_tf.set_weights(model_k_v2.get_weights())
|
model_tf.set_weights(model_k_v2.get_weights())
|
||||||
|
|
||||||
opt_k_v1 = optimizers.SGD(momentum=0.9, nesterov=True)
|
opt_k_v1 = optimizer_v1.SGD(momentum=0.9, nesterov=True)
|
||||||
opt_k_v2 = gradient_descent.SGD(momentum=0.9, nesterov=True)
|
opt_k_v2 = gradient_descent.SGD(momentum=0.9, nesterov=True)
|
||||||
opt_tf = momentum.MomentumOptimizer(
|
opt_tf = momentum.MomentumOptimizer(
|
||||||
learning_rate=0.01, momentum=0.9, use_nesterov=True)
|
learning_rate=0.01, momentum=0.9, use_nesterov=True)
|
||||||
@ -858,7 +858,7 @@ class OptimizersCompatibilityTest(keras_parameterized.TestCase):
|
|||||||
num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim)
|
num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim)
|
||||||
model_k_v2.set_weights(model_k_v1.get_weights())
|
model_k_v2.set_weights(model_k_v1.get_weights())
|
||||||
|
|
||||||
opt_k_v1 = optimizers.Adam(amsgrad=True)
|
opt_k_v1 = optimizer_v1.Adam(amsgrad=True)
|
||||||
opt_k_v2 = adam.Adam(amsgrad=True)
|
opt_k_v2 = adam.Adam(amsgrad=True)
|
||||||
|
|
||||||
model_k_v1.compile(
|
model_k_v1.compile(
|
||||||
|
@ -22,12 +22,10 @@ from __future__ import division
|
|||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
import six
|
import six
|
||||||
from six.moves import zip # pylint: disable=redefined-builtin
|
|
||||||
|
|
||||||
from tensorflow.python.distribute import distribution_strategy_context
|
|
||||||
from tensorflow.python.eager import backprop
|
|
||||||
from tensorflow.python.framework import ops
|
|
||||||
from tensorflow.python.keras import backend as K
|
from tensorflow.python.keras import backend as K
|
||||||
|
from tensorflow.python.keras.optimizer_v1 import Optimizer
|
||||||
|
from tensorflow.python.keras.optimizer_v1 import TFOptimizer
|
||||||
from tensorflow.python.keras.optimizer_v2 import adadelta as adadelta_v2
|
from tensorflow.python.keras.optimizer_v2 import adadelta as adadelta_v2
|
||||||
from tensorflow.python.keras.optimizer_v2 import adagrad as adagrad_v2
|
from tensorflow.python.keras.optimizer_v2 import adagrad as adagrad_v2
|
||||||
from tensorflow.python.keras.optimizer_v2 import adam as adam_v2
|
from tensorflow.python.keras.optimizer_v2 import adam as adam_v2
|
||||||
@ -39,819 +37,10 @@ from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
|||||||
from tensorflow.python.keras.optimizer_v2 import rmsprop as rmsprop_v2
|
from tensorflow.python.keras.optimizer_v2 import rmsprop as rmsprop_v2
|
||||||
from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object
|
from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object
|
||||||
from tensorflow.python.keras.utils.generic_utils import serialize_keras_object
|
from tensorflow.python.keras.utils.generic_utils import serialize_keras_object
|
||||||
from tensorflow.python.ops import clip_ops
|
|
||||||
from tensorflow.python.ops import math_ops
|
|
||||||
from tensorflow.python.ops import state_ops
|
|
||||||
from tensorflow.python.training import optimizer as tf_optimizer_module
|
from tensorflow.python.training import optimizer as tf_optimizer_module
|
||||||
from tensorflow.python.training import training_util
|
|
||||||
from tensorflow.python.training.tracking import base as trackable
|
|
||||||
from tensorflow.python.util import nest
|
|
||||||
from tensorflow.python.util.tf_export import keras_export
|
from tensorflow.python.util.tf_export import keras_export
|
||||||
|
|
||||||
|
|
||||||
class Optimizer(object):
|
|
||||||
"""Abstract optimizer base class.
|
|
||||||
|
|
||||||
Note: this is the parent class of all optimizers, not an actual optimizer
|
|
||||||
that can be used for training models.
|
|
||||||
|
|
||||||
All Keras optimizers support the following keyword arguments:
|
|
||||||
|
|
||||||
clipnorm: float >= 0. Gradients will be clipped
|
|
||||||
when their L2 norm exceeds this value.
|
|
||||||
clipvalue: float >= 0. Gradients will be clipped
|
|
||||||
when their absolute value exceeds this value.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
allowed_kwargs = {'clipnorm', 'clipvalue'}
|
|
||||||
for k in kwargs:
|
|
||||||
if k not in allowed_kwargs:
|
|
||||||
raise TypeError('Unexpected keyword argument '
|
|
||||||
'passed to optimizer: ' + str(k))
|
|
||||||
# checks that clipnorm >= 0 and clipvalue >= 0
|
|
||||||
if kwargs[k] < 0:
|
|
||||||
raise ValueError('Expected {} >= 0, received: {}'.format(k, kwargs[k]))
|
|
||||||
self.__dict__.update(kwargs)
|
|
||||||
self.updates = []
|
|
||||||
self.weights = []
|
|
||||||
|
|
||||||
# Set this to False, indicating `apply_gradients` does not take the
|
|
||||||
# `experimental_aggregate_gradients` argument.
|
|
||||||
_HAS_AGGREGATE_GRAD = False
|
|
||||||
|
|
||||||
def _create_all_weights(self, params):
|
|
||||||
"""Creates and sets all optimizer weights.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params: list or tuple of `Variable` objects that will be minimized
|
|
||||||
using this optimizer.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Specific weight values that are used in `get_updates`
|
|
||||||
"""
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def get_gradients(self, loss, params):
|
|
||||||
"""Returns gradients of `loss` with respect to `params`.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
loss: Loss tensor.
|
|
||||||
params: List of variables.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
List of gradient tensors.
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
ValueError: In case any gradient cannot be computed (e.g. if gradient
|
|
||||||
function not implemented).
|
|
||||||
"""
|
|
||||||
grads = K.gradients(loss, params)
|
|
||||||
if any(g is None for g in grads):
|
|
||||||
raise ValueError('An operation has `None` for gradient. '
|
|
||||||
'Please make sure that all of your ops have a '
|
|
||||||
'gradient defined (i.e. are differentiable). '
|
|
||||||
'Common ops without gradient: '
|
|
||||||
'K.argmax, K.round, K.eval.')
|
|
||||||
if hasattr(self, 'clipnorm'):
|
|
||||||
grads = [clip_ops.clip_by_norm(g, self.clipnorm) for g in grads]
|
|
||||||
if hasattr(self, 'clipvalue'):
|
|
||||||
grads = [
|
|
||||||
clip_ops.clip_by_value(g, -self.clipvalue, self.clipvalue)
|
|
||||||
for g in grads
|
|
||||||
]
|
|
||||||
return grads
|
|
||||||
|
|
||||||
def set_weights(self, weights):
|
|
||||||
"""Sets the weights of the optimizer, from Numpy arrays.
|
|
||||||
|
|
||||||
Should only be called after computing the gradients
|
|
||||||
(otherwise the optimizer has no weights).
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
weights: a list of Numpy arrays. The number of arrays and their shape
|
|
||||||
must match number of the dimensions of the weights of the optimizer
|
|
||||||
(i.e. it should match the output of `get_weights`).
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
ValueError: in case of incompatible weight shapes.
|
|
||||||
"""
|
|
||||||
params = self.weights
|
|
||||||
if len(params) != len(weights):
|
|
||||||
raise ValueError('Length of the specified weight list (' +
|
|
||||||
str(len(weights)) +
|
|
||||||
') does not match the number of weights '
|
|
||||||
'of the optimizer (' + str(len(params)) + ')')
|
|
||||||
weight_value_tuples = []
|
|
||||||
param_values = K.batch_get_value(params)
|
|
||||||
for pv, p, w in zip(param_values, params, weights):
|
|
||||||
if pv.shape != w.shape:
|
|
||||||
raise ValueError('Optimizer weight shape ' + str(pv.shape) +
|
|
||||||
' not compatible with '
|
|
||||||
'provided weight shape ' + str(w.shape))
|
|
||||||
weight_value_tuples.append((p, w))
|
|
||||||
K.batch_set_value(weight_value_tuples)
|
|
||||||
|
|
||||||
def get_weights(self):
|
|
||||||
"""Returns the current value of the weights of the optimizer.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A list of numpy arrays.
|
|
||||||
"""
|
|
||||||
return K.batch_get_value(self.weights)
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {}
|
|
||||||
if hasattr(self, 'clipnorm'):
|
|
||||||
config['clipnorm'] = self.clipnorm
|
|
||||||
if hasattr(self, 'clipvalue'):
|
|
||||||
config['clipvalue'] = self.clipvalue
|
|
||||||
return config
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_config(cls, config):
|
|
||||||
return cls(**config)
|
|
||||||
|
|
||||||
|
|
||||||
class SGD(Optimizer):
|
|
||||||
"""Stochastic gradient descent optimizer.
|
|
||||||
|
|
||||||
Includes support for momentum,
|
|
||||||
learning rate decay, and Nesterov momentum.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
lr: float >= 0. Learning rate.
|
|
||||||
momentum: float >= 0. Parameter that accelerates SGD in the relevant
|
|
||||||
direction and dampens oscillations.
|
|
||||||
decay: float >= 0. Learning rate decay over each update.
|
|
||||||
nesterov: boolean. Whether to apply Nesterov momentum.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, lr=0.01, momentum=0., decay=0., nesterov=False, **kwargs):
|
|
||||||
super(SGD, self).__init__(**kwargs)
|
|
||||||
with K.name_scope(self.__class__.__name__):
|
|
||||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
|
||||||
self.lr = K.variable(lr, name='lr')
|
|
||||||
self.momentum = K.variable(momentum, name='momentum')
|
|
||||||
self.decay = K.variable(decay, name='decay')
|
|
||||||
self.initial_decay = decay
|
|
||||||
self.nesterov = nesterov
|
|
||||||
|
|
||||||
def _create_all_weights(self, params):
|
|
||||||
shapes = [K.int_shape(p) for p in params]
|
|
||||||
moments = [K.zeros(shape) for shape in shapes]
|
|
||||||
self.weights = [self.iterations] + moments
|
|
||||||
return moments
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
grads = self.get_gradients(loss, params)
|
|
||||||
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
|
||||||
|
|
||||||
lr = self.lr
|
|
||||||
if self.initial_decay > 0:
|
|
||||||
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
|
||||||
1. /
|
|
||||||
(1. +
|
|
||||||
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
|
||||||
# momentum
|
|
||||||
moments = self._create_all_weights(params)
|
|
||||||
for p, g, m in zip(params, grads, moments):
|
|
||||||
v = self.momentum * m - lr * g # velocity
|
|
||||||
self.updates.append(state_ops.assign(m, v))
|
|
||||||
|
|
||||||
if self.nesterov:
|
|
||||||
new_p = p + self.momentum * v - lr * g
|
|
||||||
else:
|
|
||||||
new_p = p + v
|
|
||||||
|
|
||||||
# Apply constraints.
|
|
||||||
if getattr(p, 'constraint', None) is not None:
|
|
||||||
new_p = p.constraint(new_p)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(p, new_p))
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {
|
|
||||||
'lr': float(K.get_value(self.lr)),
|
|
||||||
'momentum': float(K.get_value(self.momentum)),
|
|
||||||
'decay': float(K.get_value(self.decay)),
|
|
||||||
'nesterov': self.nesterov
|
|
||||||
}
|
|
||||||
base_config = super(SGD, self).get_config()
|
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
|
||||||
|
|
||||||
|
|
||||||
class RMSprop(Optimizer):
|
|
||||||
"""RMSProp optimizer.
|
|
||||||
|
|
||||||
It is recommended to leave the parameters of this optimizer
|
|
||||||
at their default values
|
|
||||||
(except the learning rate, which can be freely tuned).
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
lr: float >= 0. Learning rate.
|
|
||||||
rho: float >= 0.
|
|
||||||
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
|
||||||
decay: float >= 0. Learning rate decay over each update.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, lr=0.001, rho=0.9, epsilon=None, decay=0., **kwargs):
|
|
||||||
super(RMSprop, self).__init__(**kwargs)
|
|
||||||
with K.name_scope(self.__class__.__name__):
|
|
||||||
self.lr = K.variable(lr, name='lr')
|
|
||||||
self.rho = K.variable(rho, name='rho')
|
|
||||||
self.decay = K.variable(decay, name='decay')
|
|
||||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
|
||||||
if epsilon is None:
|
|
||||||
epsilon = K.epsilon()
|
|
||||||
self.epsilon = epsilon
|
|
||||||
self.initial_decay = decay
|
|
||||||
|
|
||||||
def _create_all_weights(self, params):
|
|
||||||
accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
|
|
||||||
self.weights = accumulators
|
|
||||||
return accumulators
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
grads = self.get_gradients(loss, params)
|
|
||||||
accumulators = self._create_all_weights(params)
|
|
||||||
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
|
||||||
|
|
||||||
lr = self.lr
|
|
||||||
if self.initial_decay > 0:
|
|
||||||
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
|
||||||
1. /
|
|
||||||
(1. +
|
|
||||||
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
|
||||||
|
|
||||||
for p, g, a in zip(params, grads, accumulators):
|
|
||||||
# update accumulator
|
|
||||||
new_a = self.rho * a + (1. - self.rho) * math_ops.square(g)
|
|
||||||
self.updates.append(state_ops.assign(a, new_a))
|
|
||||||
new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)
|
|
||||||
|
|
||||||
# Apply constraints.
|
|
||||||
if getattr(p, 'constraint', None) is not None:
|
|
||||||
new_p = p.constraint(new_p)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(p, new_p))
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {
|
|
||||||
'lr': float(K.get_value(self.lr)),
|
|
||||||
'rho': float(K.get_value(self.rho)),
|
|
||||||
'decay': float(K.get_value(self.decay)),
|
|
||||||
'epsilon': self.epsilon
|
|
||||||
}
|
|
||||||
base_config = super(RMSprop, self).get_config()
|
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
|
||||||
|
|
||||||
|
|
||||||
class Adagrad(Optimizer):
|
|
||||||
"""Adagrad optimizer.
|
|
||||||
|
|
||||||
Adagrad is an optimizer with parameter-specific learning rates,
|
|
||||||
which are adapted relative to how frequently a parameter gets
|
|
||||||
updated during training. The more updates a parameter receives,
|
|
||||||
the smaller the updates.
|
|
||||||
|
|
||||||
It is recommended to leave the parameters of this optimizer
|
|
||||||
at their default values.
|
|
||||||
|
|
||||||
# Arguments
|
|
||||||
lr: float >= 0. Initial learning rate.
|
|
||||||
epsilon: float >= 0. If `None`, defaults to `K.epsilon()`.
|
|
||||||
decay: float >= 0. Learning rate decay over each update.
|
|
||||||
|
|
||||||
# References
|
|
||||||
- [Adaptive Subgradient Methods for Online Learning and Stochastic
|
|
||||||
Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, lr=0.01, epsilon=None, decay=0., **kwargs):
|
|
||||||
super(Adagrad, self).__init__(**kwargs)
|
|
||||||
with K.name_scope(self.__class__.__name__):
|
|
||||||
self.lr = K.variable(lr, name='lr')
|
|
||||||
self.decay = K.variable(decay, name='decay')
|
|
||||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
|
||||||
if epsilon is None:
|
|
||||||
epsilon = K.epsilon()
|
|
||||||
self.epsilon = epsilon
|
|
||||||
self.initial_decay = decay
|
|
||||||
|
|
||||||
def _create_all_weights(self, params):
|
|
||||||
shapes = [K.int_shape(p) for p in params]
|
|
||||||
accumulators = [K.zeros(shape) for shape in shapes]
|
|
||||||
self.weights = accumulators
|
|
||||||
return accumulators
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
grads = self.get_gradients(loss, params)
|
|
||||||
accumulators = self._create_all_weights(params)
|
|
||||||
|
|
||||||
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
|
||||||
|
|
||||||
lr = self.lr
|
|
||||||
if self.initial_decay > 0:
|
|
||||||
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
|
||||||
1. /
|
|
||||||
(1. +
|
|
||||||
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
|
||||||
|
|
||||||
for p, g, a in zip(params, grads, accumulators):
|
|
||||||
new_a = a + math_ops.square(g) # update accumulator
|
|
||||||
self.updates.append(state_ops.assign(a, new_a))
|
|
||||||
new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)
|
|
||||||
|
|
||||||
# Apply constraints.
|
|
||||||
if getattr(p, 'constraint', None) is not None:
|
|
||||||
new_p = p.constraint(new_p)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(p, new_p))
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {
|
|
||||||
'lr': float(K.get_value(self.lr)),
|
|
||||||
'decay': float(K.get_value(self.decay)),
|
|
||||||
'epsilon': self.epsilon
|
|
||||||
}
|
|
||||||
base_config = super(Adagrad, self).get_config()
|
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
|
||||||
|
|
||||||
|
|
||||||
class Adadelta(Optimizer):
|
|
||||||
"""Adadelta optimizer.
|
|
||||||
|
|
||||||
Adadelta is a more robust extension of Adagrad
|
|
||||||
that adapts learning rates based on a moving window of gradient updates,
|
|
||||||
instead of accumulating all past gradients. This way, Adadelta continues
|
|
||||||
learning even when many updates have been done. Compared to Adagrad, in the
|
|
||||||
original version of Adadelta you don't have to set an initial learning
|
|
||||||
rate. In this version, initial learning rate and decay factor can
|
|
||||||
be set, as in most other Keras optimizers.
|
|
||||||
|
|
||||||
It is recommended to leave the parameters of this optimizer
|
|
||||||
at their default values.
|
|
||||||
|
|
||||||
# Arguments
|
|
||||||
lr: float >= 0. Initial learning rate, defaults to 1.
|
|
||||||
It is recommended to leave it at the default value.
|
|
||||||
rho: float >= 0. Adadelta decay factor, corresponding to fraction of
|
|
||||||
gradient to keep at each time step.
|
|
||||||
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
|
||||||
decay: float >= 0. Initial learning rate decay.
|
|
||||||
|
|
||||||
# References
|
|
||||||
- [Adadelta - an adaptive learning rate
|
|
||||||
method](http://arxiv.org/abs/1212.5701)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, lr=1.0, rho=0.95, epsilon=None, decay=0., **kwargs):
|
|
||||||
super(Adadelta, self).__init__(**kwargs)
|
|
||||||
with K.name_scope(self.__class__.__name__):
|
|
||||||
self.lr = K.variable(lr, name='lr')
|
|
||||||
self.decay = K.variable(decay, name='decay')
|
|
||||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
|
||||||
if epsilon is None:
|
|
||||||
epsilon = K.epsilon()
|
|
||||||
self.rho = rho
|
|
||||||
self.epsilon = epsilon
|
|
||||||
self.initial_decay = decay
|
|
||||||
|
|
||||||
def _create_all_weights(self, params):
|
|
||||||
shapes = [K.int_shape(p) for p in params]
|
|
||||||
accumulators = [K.zeros(shape) for shape in shapes]
|
|
||||||
delta_accumulators = [K.zeros(shape) for shape in shapes]
|
|
||||||
self.weights = accumulators + delta_accumulators
|
|
||||||
return accumulators, delta_accumulators
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
grads = self.get_gradients(loss, params)
|
|
||||||
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
|
||||||
accumulators, delta_accumulators = self._create_all_weights(params)
|
|
||||||
|
|
||||||
lr = self.lr
|
|
||||||
if self.initial_decay > 0:
|
|
||||||
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
|
||||||
1. /
|
|
||||||
(1. +
|
|
||||||
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
|
||||||
|
|
||||||
for p, g, a, d_a in zip(params, grads, accumulators, delta_accumulators):
|
|
||||||
# update accumulator
|
|
||||||
new_a = self.rho * a + (1. - self.rho) * math_ops.square(g)
|
|
||||||
self.updates.append(state_ops.assign(a, new_a))
|
|
||||||
|
|
||||||
# use the new accumulator and the *old* delta_accumulator
|
|
||||||
update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon)
|
|
||||||
new_p = p - lr * update
|
|
||||||
|
|
||||||
# Apply constraints.
|
|
||||||
if getattr(p, 'constraint', None) is not None:
|
|
||||||
new_p = p.constraint(new_p)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(p, new_p))
|
|
||||||
|
|
||||||
# update delta_accumulator
|
|
||||||
new_d_a = self.rho * d_a + (1 - self.rho) * math_ops.square(update)
|
|
||||||
self.updates.append(state_ops.assign(d_a, new_d_a))
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {
|
|
||||||
'lr': float(K.get_value(self.lr)),
|
|
||||||
'rho': self.rho,
|
|
||||||
'decay': float(K.get_value(self.decay)),
|
|
||||||
'epsilon': self.epsilon
|
|
||||||
}
|
|
||||||
base_config = super(Adadelta, self).get_config()
|
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
|
||||||
|
|
||||||
|
|
||||||
class Adam(Optimizer):
|
|
||||||
"""Adam optimizer.
|
|
||||||
|
|
||||||
Default parameters follow those provided in the original paper.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
lr: float >= 0. Learning rate.
|
|
||||||
beta_1: float, 0 < beta < 1. Generally close to 1.
|
|
||||||
beta_2: float, 0 < beta < 1. Generally close to 1.
|
|
||||||
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
|
||||||
decay: float >= 0. Learning rate decay over each update.
|
|
||||||
amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm
|
|
||||||
from the paper "On the Convergence of Adam and Beyond".
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self,
|
|
||||||
lr=0.001,
|
|
||||||
beta_1=0.9,
|
|
||||||
beta_2=0.999,
|
|
||||||
epsilon=None,
|
|
||||||
decay=0.,
|
|
||||||
amsgrad=False,
|
|
||||||
**kwargs):
|
|
||||||
super(Adam, self).__init__(**kwargs)
|
|
||||||
with K.name_scope(self.__class__.__name__):
|
|
||||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
|
||||||
self.lr = K.variable(lr, name='lr')
|
|
||||||
self.beta_1 = K.variable(beta_1, name='beta_1')
|
|
||||||
self.beta_2 = K.variable(beta_2, name='beta_2')
|
|
||||||
self.decay = K.variable(decay, name='decay')
|
|
||||||
if epsilon is None:
|
|
||||||
epsilon = K.epsilon()
|
|
||||||
self.epsilon = epsilon
|
|
||||||
self.initial_decay = decay
|
|
||||||
self.amsgrad = amsgrad
|
|
||||||
|
|
||||||
def _create_all_weights(self, params):
|
|
||||||
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
|
|
||||||
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
|
|
||||||
if self.amsgrad:
|
|
||||||
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
|
|
||||||
else:
|
|
||||||
vhats = [K.zeros(1) for _ in params]
|
|
||||||
self.weights = [self.iterations] + ms + vs + vhats
|
|
||||||
return ms, vs, vhats
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
grads = self.get_gradients(loss, params)
|
|
||||||
self.updates = []
|
|
||||||
|
|
||||||
lr = self.lr
|
|
||||||
if self.initial_decay > 0:
|
|
||||||
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
|
||||||
1. /
|
|
||||||
(1. +
|
|
||||||
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
|
||||||
|
|
||||||
with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
|
|
||||||
t = math_ops.cast(self.iterations, K.floatx())
|
|
||||||
lr_t = lr * (
|
|
||||||
K.sqrt(1. - math_ops.pow(self.beta_2, t)) /
|
|
||||||
(1. - math_ops.pow(self.beta_1, t)))
|
|
||||||
|
|
||||||
ms, vs, vhats = self._create_all_weights(params)
|
|
||||||
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
|
|
||||||
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
|
|
||||||
v_t = (self.beta_2 * v) + (1. - self.beta_2) * math_ops.square(g)
|
|
||||||
if self.amsgrad:
|
|
||||||
vhat_t = math_ops.maximum(vhat, v_t)
|
|
||||||
p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
|
|
||||||
self.updates.append(state_ops.assign(vhat, vhat_t))
|
|
||||||
else:
|
|
||||||
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(m, m_t))
|
|
||||||
self.updates.append(state_ops.assign(v, v_t))
|
|
||||||
new_p = p_t
|
|
||||||
|
|
||||||
# Apply constraints.
|
|
||||||
if getattr(p, 'constraint', None) is not None:
|
|
||||||
new_p = p.constraint(new_p)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(p, new_p))
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {
|
|
||||||
'lr': float(K.get_value(self.lr)),
|
|
||||||
'beta_1': float(K.get_value(self.beta_1)),
|
|
||||||
'beta_2': float(K.get_value(self.beta_2)),
|
|
||||||
'decay': float(K.get_value(self.decay)),
|
|
||||||
'epsilon': self.epsilon,
|
|
||||||
'amsgrad': self.amsgrad
|
|
||||||
}
|
|
||||||
base_config = super(Adam, self).get_config()
|
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
|
||||||
|
|
||||||
|
|
||||||
class Adamax(Optimizer):
|
|
||||||
"""Adamax optimizer from Adam paper's Section 7.
|
|
||||||
|
|
||||||
It is a variant of Adam based on the infinity norm.
|
|
||||||
Default parameters follow those provided in the paper.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
lr: float >= 0. Learning rate.
|
|
||||||
beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
|
|
||||||
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
|
||||||
decay: float >= 0. Learning rate decay over each update.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self,
|
|
||||||
lr=0.002,
|
|
||||||
beta_1=0.9,
|
|
||||||
beta_2=0.999,
|
|
||||||
epsilon=None,
|
|
||||||
decay=0.,
|
|
||||||
**kwargs):
|
|
||||||
super(Adamax, self).__init__(**kwargs)
|
|
||||||
with K.name_scope(self.__class__.__name__):
|
|
||||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
|
||||||
self.lr = K.variable(lr, name='lr')
|
|
||||||
self.beta_1 = K.variable(beta_1, name='beta_1')
|
|
||||||
self.beta_2 = K.variable(beta_2, name='beta_2')
|
|
||||||
self.decay = K.variable(decay, name='decay')
|
|
||||||
if epsilon is None:
|
|
||||||
epsilon = K.epsilon()
|
|
||||||
self.epsilon = epsilon
|
|
||||||
self.initial_decay = decay
|
|
||||||
|
|
||||||
def _create_all_weights(self, params):
|
|
||||||
|
|
||||||
shapes = [K.int_shape(p) for p in params]
|
|
||||||
# zero init of 1st moment
|
|
||||||
ms = [K.zeros(shape) for shape in shapes]
|
|
||||||
# zero init of exponentially weighted infinity norm
|
|
||||||
us = [K.zeros(shape) for shape in shapes]
|
|
||||||
self.weights = [self.iterations] + ms + us
|
|
||||||
return ms, us
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
grads = self.get_gradients(loss, params)
|
|
||||||
self.updates = []
|
|
||||||
|
|
||||||
lr = self.lr
|
|
||||||
if self.initial_decay > 0:
|
|
||||||
lr = lr * ( # pylint: disable=g-no-augmented-assignment
|
|
||||||
1. /
|
|
||||||
(1. +
|
|
||||||
self.decay * math_ops.cast(self.iterations, K.dtype(self.decay))))
|
|
||||||
|
|
||||||
with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
|
|
||||||
t = math_ops.cast(self.iterations, K.floatx())
|
|
||||||
lr_t = lr / (1. - math_ops.pow(self.beta_1, t))
|
|
||||||
|
|
||||||
ms, us = self._create_all_weights(params)
|
|
||||||
|
|
||||||
for p, g, m, u in zip(params, grads, ms, us):
|
|
||||||
|
|
||||||
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
|
|
||||||
u_t = math_ops.maximum(self.beta_2 * u, math_ops.abs(g))
|
|
||||||
p_t = p - lr_t * m_t / (u_t + self.epsilon)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(m, m_t))
|
|
||||||
self.updates.append(state_ops.assign(u, u_t))
|
|
||||||
new_p = p_t
|
|
||||||
|
|
||||||
# Apply constraints.
|
|
||||||
if getattr(p, 'constraint', None) is not None:
|
|
||||||
new_p = p.constraint(new_p)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(p, new_p))
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {
|
|
||||||
'lr': float(K.get_value(self.lr)),
|
|
||||||
'beta_1': float(K.get_value(self.beta_1)),
|
|
||||||
'beta_2': float(K.get_value(self.beta_2)),
|
|
||||||
'decay': float(K.get_value(self.decay)),
|
|
||||||
'epsilon': self.epsilon
|
|
||||||
}
|
|
||||||
base_config = super(Adamax, self).get_config()
|
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
|
||||||
|
|
||||||
|
|
||||||
class Nadam(Optimizer):
|
|
||||||
"""Nesterov Adam optimizer.
|
|
||||||
|
|
||||||
Much like Adam is essentially RMSprop with momentum,
|
|
||||||
Nadam is Adam RMSprop with Nesterov momentum.
|
|
||||||
|
|
||||||
Default parameters follow those provided in the paper.
|
|
||||||
It is recommended to leave the parameters of this optimizer
|
|
||||||
at their default values.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
lr: float >= 0. Learning rate.
|
|
||||||
beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
|
|
||||||
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self,
|
|
||||||
lr=0.002,
|
|
||||||
beta_1=0.9,
|
|
||||||
beta_2=0.999,
|
|
||||||
epsilon=None,
|
|
||||||
schedule_decay=0.004,
|
|
||||||
**kwargs):
|
|
||||||
super(Nadam, self).__init__(**kwargs)
|
|
||||||
with K.name_scope(self.__class__.__name__):
|
|
||||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
|
||||||
self.m_schedule = K.variable(1., name='m_schedule')
|
|
||||||
self.lr = K.variable(lr, name='lr')
|
|
||||||
self.beta_1 = K.variable(beta_1, name='beta_1')
|
|
||||||
self.beta_2 = K.variable(beta_2, name='beta_2')
|
|
||||||
if epsilon is None:
|
|
||||||
epsilon = K.epsilon()
|
|
||||||
self.epsilon = epsilon
|
|
||||||
self.schedule_decay = schedule_decay
|
|
||||||
|
|
||||||
def _create_all_weights(self, params):
|
|
||||||
shapes = [K.int_shape(p) for p in params]
|
|
||||||
ms = [K.zeros(shape) for shape in shapes]
|
|
||||||
vs = [K.zeros(shape) for shape in shapes]
|
|
||||||
|
|
||||||
self.weights = [self.iterations, self.m_schedule] + ms + vs
|
|
||||||
return ms, vs
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
grads = self.get_gradients(loss, params)
|
|
||||||
self.updates = []
|
|
||||||
|
|
||||||
with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
|
|
||||||
t = math_ops.cast(self.iterations, K.floatx())
|
|
||||||
|
|
||||||
# Due to the recommendations in [2], i.e. warming momentum schedule
|
|
||||||
momentum_cache_t = self.beta_1 * (
|
|
||||||
1. - 0.5 *
|
|
||||||
(math_ops.pow(K.cast_to_floatx(0.96), t * self.schedule_decay)))
|
|
||||||
momentum_cache_t_1 = self.beta_1 * (
|
|
||||||
1. - 0.5 *
|
|
||||||
(math_ops.pow(K.cast_to_floatx(0.96), (t + 1) * self.schedule_decay)))
|
|
||||||
m_schedule_new = self.m_schedule * momentum_cache_t
|
|
||||||
m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
|
|
||||||
self.updates.append((self.m_schedule, m_schedule_new))
|
|
||||||
|
|
||||||
ms, vs = self._create_all_weights(params)
|
|
||||||
|
|
||||||
for p, g, m, v in zip(params, grads, ms, vs):
|
|
||||||
# the following equations given in [1]
|
|
||||||
g_prime = g / (1. - m_schedule_new)
|
|
||||||
m_t = self.beta_1 * m + (1. - self.beta_1) * g
|
|
||||||
m_t_prime = m_t / (1. - m_schedule_next)
|
|
||||||
v_t = self.beta_2 * v + (1. - self.beta_2) * math_ops.square(g)
|
|
||||||
v_t_prime = v_t / (1. - math_ops.pow(self.beta_2, t))
|
|
||||||
m_t_bar = (1. -
|
|
||||||
momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(m, m_t))
|
|
||||||
self.updates.append(state_ops.assign(v, v_t))
|
|
||||||
|
|
||||||
p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)
|
|
||||||
new_p = p_t
|
|
||||||
|
|
||||||
# Apply constraints.
|
|
||||||
if getattr(p, 'constraint', None) is not None:
|
|
||||||
new_p = p.constraint(new_p)
|
|
||||||
|
|
||||||
self.updates.append(state_ops.assign(p, new_p))
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = {
|
|
||||||
'lr': float(K.get_value(self.lr)),
|
|
||||||
'beta_1': float(K.get_value(self.beta_1)),
|
|
||||||
'beta_2': float(K.get_value(self.beta_2)),
|
|
||||||
'epsilon': self.epsilon,
|
|
||||||
'schedule_decay': self.schedule_decay
|
|
||||||
}
|
|
||||||
base_config = super(Nadam, self).get_config()
|
|
||||||
return dict(list(base_config.items()) + list(config.items()))
|
|
||||||
|
|
||||||
|
|
||||||
class TFOptimizer(Optimizer, trackable.Trackable):
|
|
||||||
"""Wrapper class for native TensorFlow optimizers."""
|
|
||||||
|
|
||||||
def __init__(self, optimizer, iterations=None): # pylint: disable=super-init-not-called
|
|
||||||
self.optimizer = optimizer
|
|
||||||
self._track_trackable(optimizer, name='optimizer')
|
|
||||||
if iterations is None:
|
|
||||||
with K.name_scope(self.__class__.__name__):
|
|
||||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
|
||||||
else:
|
|
||||||
self.iterations = iterations
|
|
||||||
self._track_trackable(self.iterations, name='global_step')
|
|
||||||
|
|
||||||
def _clip_gradients(self, grads):
|
|
||||||
"""Clip gradients according to the clipnorm and clipvalue attributes."""
|
|
||||||
# TFOptimizer wrapper has no gradient clipping options.
|
|
||||||
return grads
|
|
||||||
|
|
||||||
def minimize(self, loss, var_list, grad_loss=None, tape=None):
|
|
||||||
"""Mimics the `OptimizerV2.minimize` API."""
|
|
||||||
if not callable(loss) and tape is None:
|
|
||||||
raise ValueError('`tape` is required when a `Tensor` loss is passed.')
|
|
||||||
tape = tape if tape is not None else backprop.GradientTape()
|
|
||||||
|
|
||||||
if callable(loss):
|
|
||||||
with tape:
|
|
||||||
if not callable(var_list):
|
|
||||||
tape.watch(var_list)
|
|
||||||
loss = loss()
|
|
||||||
if callable(var_list):
|
|
||||||
var_list = var_list()
|
|
||||||
|
|
||||||
var_list = nest.flatten(var_list)
|
|
||||||
if var_list:
|
|
||||||
grads = tape.gradient(loss, var_list, grad_loss)
|
|
||||||
grads_and_vars = list(zip(grads, var_list))
|
|
||||||
self.apply_gradients(grads_and_vars)
|
|
||||||
|
|
||||||
def apply_gradients(self, grads_and_vars):
|
|
||||||
self.optimizer.apply_gradients(grads_and_vars, global_step=self.iterations)
|
|
||||||
|
|
||||||
def get_grads(self, loss, params):
|
|
||||||
return self.optimizer.compute_gradients(loss, params)
|
|
||||||
|
|
||||||
def get_updates(self, loss, params):
|
|
||||||
if distribution_strategy_context.has_strategy():
|
|
||||||
self.updates = []
|
|
||||||
|
|
||||||
if not params:
|
|
||||||
# After the model vars have been created, the second call to get_updates
|
|
||||||
# is called with params as an empty list. This ensures that we call
|
|
||||||
# compute_gradients with params=None.
|
|
||||||
grads = self.optimizer.compute_gradients(loss)
|
|
||||||
else:
|
|
||||||
grads = self.optimizer.compute_gradients(loss, params)
|
|
||||||
global_step = training_util.get_global_step()
|
|
||||||
opt_update = self.optimizer.apply_gradients(grads, global_step)
|
|
||||||
else:
|
|
||||||
if not params:
|
|
||||||
self.updates = [state_ops.assign_add(self.iterations, 1)]
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
# Updates list starts out empty because the iterations variable is
|
|
||||||
# incremented in optimizer.apply_gradients()
|
|
||||||
self.updates = []
|
|
||||||
grads = self.optimizer.compute_gradients(loss, params)
|
|
||||||
opt_update = self.optimizer.apply_gradients(
|
|
||||||
grads, global_step=self.iterations)
|
|
||||||
|
|
||||||
self.updates.append(opt_update)
|
|
||||||
return self.updates
|
|
||||||
|
|
||||||
@property
|
|
||||||
def weights(self):
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def from_config(self, config):
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
|
|
||||||
# Aliases.
|
|
||||||
|
|
||||||
sgd = SGD
|
|
||||||
rmsprop = RMSprop
|
|
||||||
adagrad = Adagrad
|
|
||||||
adadelta = Adadelta
|
|
||||||
adam = Adam
|
|
||||||
adamax = Adamax
|
|
||||||
nadam = Nadam
|
|
||||||
|
|
||||||
|
|
||||||
@keras_export('keras.optimizers.serialize')
|
@keras_export('keras.optimizers.serialize')
|
||||||
def serialize(optimizer):
|
def serialize(optimizer):
|
||||||
return serialize_keras_object(optimizer)
|
return serialize_keras_object(optimizer)
|
||||||
|
@ -27,6 +27,7 @@ from tensorflow.python import keras
|
|||||||
from tensorflow.python.eager import context
|
from tensorflow.python.eager import context
|
||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.keras import keras_parameterized
|
from tensorflow.python.keras import keras_parameterized
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import testing_utils
|
from tensorflow.python.keras import testing_utils
|
||||||
from tensorflow.python.keras.utils import np_utils
|
from tensorflow.python.keras.utils import np_utils
|
||||||
from tensorflow.python.platform import test
|
from tensorflow.python.platform import test
|
||||||
@ -109,63 +110,63 @@ class KerasOptimizersTest(keras_parameterized.TestCase):
|
|||||||
|
|
||||||
def test_sgd(self):
|
def test_sgd(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(keras.optimizers.SGD())
|
self._test_optimizer(optimizer_v1.SGD())
|
||||||
|
|
||||||
def test_momentum(self):
|
def test_momentum(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(
|
self._test_optimizer(
|
||||||
keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True))
|
optimizer_v1.SGD(lr=0.01, momentum=0.9, nesterov=True))
|
||||||
|
|
||||||
def test_rmsprop(self):
|
def test_rmsprop(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(keras.optimizers.RMSprop())
|
self._test_optimizer(optimizer_v1.RMSprop())
|
||||||
self._test_optimizer(keras.optimizers.RMSprop(decay=1e-3))
|
self._test_optimizer(optimizer_v1.RMSprop(decay=1e-3))
|
||||||
|
|
||||||
def test_adagrad(self):
|
def test_adagrad(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(keras.optimizers.Adagrad())
|
self._test_optimizer(optimizer_v1.Adagrad())
|
||||||
self._test_optimizer(keras.optimizers.Adagrad(decay=1e-3))
|
self._test_optimizer(optimizer_v1.Adagrad(decay=1e-3))
|
||||||
|
|
||||||
def test_adadelta(self):
|
def test_adadelta(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(keras.optimizers.Adadelta(), target=0.6)
|
self._test_optimizer(optimizer_v1.Adadelta(), target=0.6)
|
||||||
# Accuracy seems dependent on the initialization. Even adding
|
# Accuracy seems dependent on the initialization. Even adding
|
||||||
# tf.compat.v1.Print nodes in the graph seemed to affect the
|
# tf.compat.v1.Print nodes in the graph seemed to affect the
|
||||||
# initialization seed, and hence the accuracy.
|
# initialization seed, and hence the accuracy.
|
||||||
self._test_optimizer(keras.optimizers.Adadelta(decay=1e-3), target=0.4)
|
self._test_optimizer(optimizer_v1.Adadelta(decay=1e-3), target=0.4)
|
||||||
|
|
||||||
def test_adam(self):
|
def test_adam(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(keras.optimizers.Adam())
|
self._test_optimizer(optimizer_v1.Adam())
|
||||||
# Accuracy seems dependent on the seed initialization.
|
# Accuracy seems dependent on the seed initialization.
|
||||||
# TODO(b/121051441): fix test flakiness.
|
# TODO(b/121051441): fix test flakiness.
|
||||||
self._test_optimizer(keras.optimizers.Adam(decay=1e-3), target=0.73)
|
self._test_optimizer(optimizer_v1.Adam(decay=1e-3), target=0.73)
|
||||||
self._test_optimizer(keras.optimizers.Adam(amsgrad=True))
|
self._test_optimizer(optimizer_v1.Adam(amsgrad=True))
|
||||||
|
|
||||||
def test_adamax(self):
|
def test_adamax(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(keras.optimizers.Adamax())
|
self._test_optimizer(optimizer_v1.Adamax())
|
||||||
self._test_optimizer(keras.optimizers.Adamax(decay=1e-3))
|
self._test_optimizer(optimizer_v1.Adamax(decay=1e-3))
|
||||||
|
|
||||||
def test_nadam(self):
|
def test_nadam(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(keras.optimizers.Nadam())
|
self._test_optimizer(optimizer_v1.Nadam())
|
||||||
|
|
||||||
def test_clipnorm(self):
|
def test_clipnorm(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(
|
self._test_optimizer(
|
||||||
keras.optimizers.SGD(lr=0.01, momentum=0.9, clipnorm=0.5))
|
optimizer_v1.SGD(lr=0.01, momentum=0.9, clipnorm=0.5))
|
||||||
|
|
||||||
def test_clipvalue(self):
|
def test_clipvalue(self):
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
self._test_optimizer(
|
self._test_optimizer(
|
||||||
keras.optimizers.SGD(lr=0.01, momentum=0.9, clipvalue=0.5))
|
optimizer_v1.SGD(lr=0.01, momentum=0.9, clipvalue=0.5))
|
||||||
|
|
||||||
def test_tf_optimizer(self):
|
def test_tf_optimizer(self):
|
||||||
if context.executing_eagerly():
|
if context.executing_eagerly():
|
||||||
self.skipTest(
|
self.skipTest(
|
||||||
'v1 optimizer does not run in eager mode')
|
'v1 optimizer does not run in eager mode')
|
||||||
optimizer = keras.optimizers.TFOptimizer(AdamOptimizer(0.01))
|
optimizer = optimizer_v1.TFOptimizer(AdamOptimizer(0.01))
|
||||||
model = keras.models.Sequential()
|
model = keras.models.Sequential()
|
||||||
model.add(keras.layers.Dense(
|
model.add(keras.layers.Dense(
|
||||||
2, input_shape=(3,), kernel_constraint=keras.constraints.MaxNorm(1)))
|
2, input_shape=(3,), kernel_constraint=keras.constraints.MaxNorm(1)))
|
||||||
@ -194,7 +195,7 @@ class KerasOptimizersTest(keras_parameterized.TestCase):
|
|||||||
'v1 optimizer does not run in eager mode')
|
'v1 optimizer does not run in eager mode')
|
||||||
graph = ops.Graph()
|
graph = ops.Graph()
|
||||||
with graph.as_default():
|
with graph.as_default():
|
||||||
optimizer = keras.optimizers.TFOptimizer(AdamOptimizer(0.01))
|
optimizer = optimizer_v1.TFOptimizer(AdamOptimizer(0.01))
|
||||||
keras.backend.track_tf_optimizer(optimizer)
|
keras.backend.track_tf_optimizer(optimizer)
|
||||||
optimizer_weak = weakref.ref(optimizer)
|
optimizer_weak = weakref.ref(optimizer)
|
||||||
graph_weak = weakref.ref(graph)
|
graph_weak = weakref.ref(graph)
|
||||||
@ -209,7 +210,7 @@ class KerasOptimizersTest(keras_parameterized.TestCase):
|
|||||||
self.skipTest(
|
self.skipTest(
|
||||||
'v1 optimizer does not run in eager mode')
|
'v1 optimizer does not run in eager mode')
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
optimizer = keras.optimizers.TFOptimizer(AdamOptimizer(0.01))
|
optimizer = optimizer_v1.TFOptimizer(AdamOptimizer(0.01))
|
||||||
model = keras.models.Sequential()
|
model = keras.models.Sequential()
|
||||||
model.add(keras.layers.Dense(
|
model.add(keras.layers.Dense(
|
||||||
2, input_shape=(3,), kernel_constraint=keras.constraints.MaxNorm(1)))
|
2, input_shape=(3,), kernel_constraint=keras.constraints.MaxNorm(1)))
|
||||||
@ -229,9 +230,9 @@ class KerasOptimizersTest(keras_parameterized.TestCase):
|
|||||||
|
|
||||||
def test_negative_clipvalue_or_clipnorm(self):
|
def test_negative_clipvalue_or_clipnorm(self):
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
_ = keras.optimizers.SGD(lr=0.01, clipvalue=-0.5)
|
_ = optimizer_v1.SGD(lr=0.01, clipvalue=-0.5)
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
_ = keras.optimizers.Adam(clipnorm=-2.0)
|
_ = optimizer_v1.Adam(clipnorm=-2.0)
|
||||||
|
|
||||||
def test_mixed_precision_loss_scale_optimizer(self):
|
def test_mixed_precision_loss_scale_optimizer(self):
|
||||||
if context.executing_eagerly():
|
if context.executing_eagerly():
|
||||||
|
@ -26,7 +26,7 @@ import numpy as np
|
|||||||
from six.moves import zip # pylint: disable=redefined-builtin
|
from six.moves import zip # pylint: disable=redefined-builtin
|
||||||
|
|
||||||
from tensorflow.python.keras import backend as K
|
from tensorflow.python.keras import backend as K
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras.saving import model_config as model_config_lib
|
from tensorflow.python.keras.saving import model_config as model_config_lib
|
||||||
from tensorflow.python.keras.saving import saving_utils
|
from tensorflow.python.keras.saving import saving_utils
|
||||||
from tensorflow.python.keras.saving.saved_model import json_utils
|
from tensorflow.python.keras.saving.saved_model import json_utils
|
||||||
@ -127,7 +127,7 @@ def save_model_to_hdf5(model, filepath, overwrite=True, include_optimizer=True):
|
|||||||
# TODO(b/128683857): Add integration tests between tf.keras and external
|
# TODO(b/128683857): Add integration tests between tf.keras and external
|
||||||
# Keras, to avoid breaking TF.js users.
|
# Keras, to avoid breaking TF.js users.
|
||||||
if (include_optimizer and model.optimizer and
|
if (include_optimizer and model.optimizer and
|
||||||
not isinstance(model.optimizer, optimizers.TFOptimizer)):
|
not isinstance(model.optimizer, optimizer_v1.TFOptimizer)):
|
||||||
save_optimizer_weights_to_hdf5_group(f, model.optimizer)
|
save_optimizer_weights_to_hdf5_group(f, model.optimizer)
|
||||||
|
|
||||||
f.flush()
|
f.flush()
|
||||||
|
@ -34,6 +34,7 @@ from tensorflow.python.framework import dtypes
|
|||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.keras import combinations
|
from tensorflow.python.keras import combinations
|
||||||
from tensorflow.python.keras import keras_parameterized
|
from tensorflow.python.keras import keras_parameterized
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizers
|
||||||
from tensorflow.python.keras import testing_utils
|
from tensorflow.python.keras import testing_utils
|
||||||
from tensorflow.python.keras.engine import training
|
from tensorflow.python.keras.engine import training
|
||||||
@ -341,7 +342,7 @@ class TestWeightSavingAndLoading(test.TestCase, parameterized.TestCase):
|
|||||||
name='d1'))
|
name='d1'))
|
||||||
ref_model.add(keras.layers.Dense(num_classes, name='d2'))
|
ref_model.add(keras.layers.Dense(num_classes, name='d2'))
|
||||||
ref_model.compile(loss=keras.losses.MSE,
|
ref_model.compile(loss=keras.losses.MSE,
|
||||||
optimizer=keras.optimizers.RMSprop(lr=0.0001),
|
optimizer=optimizer_v1.RMSprop(lr=0.0001),
|
||||||
metrics=[keras.metrics.categorical_accuracy])
|
metrics=[keras.metrics.categorical_accuracy])
|
||||||
|
|
||||||
f_ref_model = h5py.File(h5_path, 'w')
|
f_ref_model = h5py.File(h5_path, 'w')
|
||||||
@ -354,7 +355,7 @@ class TestWeightSavingAndLoading(test.TestCase, parameterized.TestCase):
|
|||||||
name='d1'))
|
name='d1'))
|
||||||
model.add(keras.layers.Dense(num_classes, name='d2'))
|
model.add(keras.layers.Dense(num_classes, name='d2'))
|
||||||
model.compile(loss=keras.losses.MSE,
|
model.compile(loss=keras.losses.MSE,
|
||||||
optimizer=keras.optimizers.RMSprop(lr=0.0001),
|
optimizer=optimizer_v1.RMSprop(lr=0.0001),
|
||||||
metrics=[keras.metrics.categorical_accuracy])
|
metrics=[keras.metrics.categorical_accuracy])
|
||||||
with self.assertRaisesRegex(
|
with self.assertRaisesRegex(
|
||||||
ValueError, r'Layer #0 \(named "d1"\), weight '
|
ValueError, r'Layer #0 \(named "d1"\), weight '
|
||||||
@ -515,7 +516,7 @@ class TestWholeModelSaving(keras_parameterized.TestCase):
|
|||||||
with ops.Graph().as_default(), self.cached_session():
|
with ops.Graph().as_default(), self.cached_session():
|
||||||
# test with custom optimizer, loss
|
# test with custom optimizer, loss
|
||||||
|
|
||||||
class CustomOp(keras.optimizers.RMSprop):
|
class CustomOp(optimizer_v1.RMSprop):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def custom_loss(y_true, y_pred):
|
def custom_loss(y_true, y_pred):
|
||||||
@ -692,7 +693,7 @@ class TestWholeModelSaving(keras_parameterized.TestCase):
|
|||||||
model = keras.Model(inputs, outputs)
|
model = keras.Model(inputs, outputs)
|
||||||
model.compile(
|
model.compile(
|
||||||
loss=keras.losses.MSE,
|
loss=keras.losses.MSE,
|
||||||
optimizer=keras.optimizers.Adam(),
|
optimizer=optimizer_v1.Adam(),
|
||||||
metrics=[
|
metrics=[
|
||||||
keras.metrics.categorical_accuracy,
|
keras.metrics.categorical_accuracy,
|
||||||
keras.metrics.CategoricalAccuracy()
|
keras.metrics.CategoricalAccuracy()
|
||||||
@ -1028,7 +1029,7 @@ class TestWeightSavingAndLoadingTFFormat(test.TestCase, parameterized.TestCase):
|
|||||||
model = keras.models.Sequential()
|
model = keras.models.Sequential()
|
||||||
model.add(keras.layers.Dense(2, input_shape=(3,)))
|
model.add(keras.layers.Dense(2, input_shape=(3,)))
|
||||||
model.add(keras.layers.Dense(3))
|
model.add(keras.layers.Dense(3))
|
||||||
model.compile(loss='mse', optimizer=optimizers.Adam(), metrics=['acc'])
|
model.compile(loss='mse', optimizer=optimizer_v1.Adam(), metrics=['acc'])
|
||||||
if not ops.executing_eagerly_outside_functions():
|
if not ops.executing_eagerly_outside_functions():
|
||||||
model._make_train_function()
|
model._make_train_function()
|
||||||
temp_dir = self.get_temp_dir()
|
temp_dir = self.get_temp_dir()
|
||||||
|
@ -25,7 +25,7 @@ import six
|
|||||||
from tensorflow.python.client import session
|
from tensorflow.python.client import session
|
||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.keras import backend as K
|
from tensorflow.python.keras import backend as K
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
||||||
from tensorflow.python.keras.saving import model_config
|
from tensorflow.python.keras.saving import model_config
|
||||||
from tensorflow.python.keras.saving import saving_utils
|
from tensorflow.python.keras.saving import saving_utils
|
||||||
@ -206,7 +206,7 @@ def _save_v1_format(model, path, custom_objects, as_text, input_signature):
|
|||||||
|
|
||||||
has_saved_vars = False
|
has_saved_vars = False
|
||||||
if model.optimizer:
|
if model.optimizer:
|
||||||
if isinstance(model.optimizer, (optimizers.TFOptimizer,
|
if isinstance(model.optimizer, (optimizer_v1.TFOptimizer,
|
||||||
optimizer_v2.OptimizerV2)):
|
optimizer_v2.OptimizerV2)):
|
||||||
_export_mode(mode_keys.ModeKeys.TRAIN, has_saved_vars, **export_args)
|
_export_mode(mode_keys.ModeKeys.TRAIN, has_saved_vars, **export_args)
|
||||||
has_saved_vars = True
|
has_saved_vars = True
|
||||||
|
@ -31,6 +31,7 @@ from tensorflow.python.eager import context
|
|||||||
from tensorflow.python.framework import dtypes
|
from tensorflow.python.framework import dtypes
|
||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
from tensorflow.python.framework import tensor_spec
|
from tensorflow.python.framework import tensor_spec
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras.engine import training as model_lib
|
from tensorflow.python.keras.engine import training as model_lib
|
||||||
from tensorflow.python.keras.optimizer_v2 import adadelta
|
from tensorflow.python.keras.optimizer_v2 import adadelta
|
||||||
from tensorflow.python.keras.optimizer_v2 import rmsprop
|
from tensorflow.python.keras.optimizer_v2 import rmsprop
|
||||||
@ -458,7 +459,7 @@ class TestModelSavedModelExport(test.TestCase, parameterized.TestCase):
|
|||||||
x = keras.layers.Dense(2)(inputs)
|
x = keras.layers.Dense(2)(inputs)
|
||||||
x = keras.layers.Dense(3)(x)
|
x = keras.layers.Dense(3)(x)
|
||||||
clone = keras.models.Model(inputs, x)
|
clone = keras.models.Model(inputs, x)
|
||||||
clone.compile(loss='mse', optimizer=keras.optimizers.RMSprop(lr=0.0001))
|
clone.compile(loss='mse', optimizer=optimizer_v1.RMSprop(lr=0.0001))
|
||||||
clone.train_on_batch(input_arr, target_arr)
|
clone.train_on_batch(input_arr, target_arr)
|
||||||
|
|
||||||
keras_saved_model._assert_same_non_optimizer_objects(
|
keras_saved_model._assert_same_non_optimizer_objects(
|
||||||
@ -487,7 +488,7 @@ class TestModelSavedModelExport(test.TestCase, parameterized.TestCase):
|
|||||||
x = keras.layers.Dense(4)(x)
|
x = keras.layers.Dense(4)(x)
|
||||||
x = keras.layers.Dense(3)(x)
|
x = keras.layers.Dense(3)(x)
|
||||||
clone = keras.models.Model(inputs, x)
|
clone = keras.models.Model(inputs, x)
|
||||||
clone.compile(loss='mse', optimizer=keras.optimizers.RMSprop(lr=0.0001))
|
clone.compile(loss='mse', optimizer=optimizer_v1.RMSprop(lr=0.0001))
|
||||||
clone.train_on_batch(input_arr, target_arr)
|
clone.train_on_batch(input_arr, target_arr)
|
||||||
|
|
||||||
def testSaveSequentialModelWithoutInputShapes(self):
|
def testSaveSequentialModelWithoutInputShapes(self):
|
||||||
|
@ -24,6 +24,7 @@ import six
|
|||||||
from tensorflow.python.eager import def_function
|
from tensorflow.python.eager import def_function
|
||||||
from tensorflow.python.keras import backend as K
|
from tensorflow.python.keras import backend as K
|
||||||
from tensorflow.python.keras import losses
|
from tensorflow.python.keras import losses
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import optimizers
|
from tensorflow.python.keras import optimizers
|
||||||
from tensorflow.python.keras.engine import base_layer_utils
|
from tensorflow.python.keras.engine import base_layer_utils
|
||||||
from tensorflow.python.keras.utils import generic_utils
|
from tensorflow.python.keras.utils import generic_utils
|
||||||
@ -161,7 +162,7 @@ def model_metadata(model, include_optimizer=True, require_config=True):
|
|||||||
backend=K.backend(),
|
backend=K.backend(),
|
||||||
model_config=model_config)
|
model_config=model_config)
|
||||||
if model.optimizer and include_optimizer:
|
if model.optimizer and include_optimizer:
|
||||||
if isinstance(model.optimizer, optimizers.TFOptimizer):
|
if isinstance(model.optimizer, optimizer_v1.TFOptimizer):
|
||||||
logging.warning(
|
logging.warning(
|
||||||
'TensorFlow optimizers do not '
|
'TensorFlow optimizers do not '
|
||||||
'make it possible to access '
|
'make it possible to access '
|
||||||
|
@ -26,6 +26,7 @@ import numpy as np
|
|||||||
|
|
||||||
from tensorflow.python import keras
|
from tensorflow.python import keras
|
||||||
from tensorflow.python.keras import keras_parameterized
|
from tensorflow.python.keras import keras_parameterized
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras import testing_utils
|
from tensorflow.python.keras import testing_utils
|
||||||
from tensorflow.python.keras.tests import model_architectures
|
from tensorflow.python.keras.tests import model_architectures
|
||||||
from tensorflow.python.platform import test
|
from tensorflow.python.platform import test
|
||||||
@ -62,7 +63,7 @@ class TestModelArchitectures(keras_parameterized.TestCase):
|
|||||||
def get_custom_objects(self):
|
def get_custom_objects(self):
|
||||||
"""Define custom_objects."""
|
"""Define custom_objects."""
|
||||||
|
|
||||||
class CustomOpt(keras.optimizers.SGD):
|
class CustomOpt(optimizer_v1.SGD):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def custom_loss(y_true, y_pred):
|
def custom_loss(y_true, y_pred):
|
||||||
|
@ -24,6 +24,7 @@ from tensorflow.python import keras
|
|||||||
from tensorflow.python.eager import context
|
from tensorflow.python.eager import context
|
||||||
from tensorflow.python.framework import config
|
from tensorflow.python.framework import config
|
||||||
from tensorflow.python.framework import ops
|
from tensorflow.python.framework import ops
|
||||||
|
from tensorflow.python.keras import optimizer_v1
|
||||||
from tensorflow.python.keras.utils import multi_gpu_utils
|
from tensorflow.python.keras.utils import multi_gpu_utils
|
||||||
from tensorflow.python.keras.utils import np_utils
|
from tensorflow.python.keras.utils import np_utils
|
||||||
from tensorflow.python.platform import test
|
from tensorflow.python.platform import test
|
||||||
@ -191,7 +192,7 @@ class TestMultiGPUModel(test.TestCase):
|
|||||||
|
|
||||||
parallel_model.compile(
|
parallel_model.compile(
|
||||||
loss='categorical_crossentropy',
|
loss='categorical_crossentropy',
|
||||||
optimizer=keras.optimizers.RMSprop(lr=0.0001, decay=1e-6),
|
optimizer=optimizer_v1.RMSprop(lr=0.0001, decay=1e-6),
|
||||||
metrics=['accuracy'],
|
metrics=['accuracy'],
|
||||||
target_tensors=[targets])
|
target_tensors=[targets])
|
||||||
parallel_model.fit(epochs=1, steps_per_epoch=3)
|
parallel_model.fit(epochs=1, steps_per_epoch=3)
|
||||||
|
Loading…
Reference in New Issue
Block a user