Utility function for supporting classify and regress APIs for Keras models.

PiperOrigin-RevId: 292012653
Change-Id: I7a031bbbd75d4d9ae98cf5fe23eb482083db34a5
This commit is contained in:
A. Unique TensorFlower 2020-01-28 14:21:38 -08:00 committed by TensorFlower Gardener
parent 4152ed672e
commit a670c87ea6
7 changed files with 574 additions and 0 deletions

View File

@ -24,6 +24,7 @@ py_library(
":load",
":loader",
":main_op",
":method_name_updater",
":save",
":signature_constants",
":signature_def_utils",
@ -516,3 +517,27 @@ py_library(
"@six_archive//:six",
],
)
py_library(
name = "method_name_updater",
srcs = ["method_name_updater.py"],
srcs_version = "PY2AND3",
deps = [
":constants",
":loader",
"//tensorflow/python:lib",
"//tensorflow/python:platform",
"//tensorflow/python:util",
],
)
tf_py_test(
name = "method_name_updater_test",
srcs = ["method_name_updater_test.py"],
deps = [
":method_name_updater",
"//tensorflow/core:protos_all_py",
"//tensorflow/python:framework",
"//tensorflow/python/eager:test",
],
)

View File

@ -0,0 +1,148 @@
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SignatureDef method name utility functions.
Utility functions for manipulating signature_def.method_names.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from tensorflow.python.lib.io import file_io
from tensorflow.python.platform import tf_logging
from tensorflow.python.saved_model import constants
from tensorflow.python.saved_model import loader_impl as loader
from tensorflow.python.util import compat
from tensorflow.python.util.tf_export import tf_export
# TODO(jdchung): Consider integrated this into the saved_model_cli so that users
# could do this from the command line directly.
@tf_export(v1=["saved_model.signature_def_utils.MethodNameUpdater"])
class MethodNameUpdater(object):
"""Updates the method name(s) of the SavedModel stored in the given path.
The `MethodNameUpdater` class provides the functionality to update the method
name field in the signature_defs of the given SavedModel. For example, it
can be used to replace the `predict` `method_name` to `regress`.
Typical usages of the `MethodNameUpdater`
```python
...
updater = tf.compat.v1.saved_model.MethodNameUpdater(export_dir)
# Update all signature_defs with key "foo" in all meta graph defs.
updater.replace_method_name(signature_key="foo", method_name="regress")
# Update a single signature_def with key "bar" in the meta graph def with
# tags ["serve"]
updater.replace_method_name(signature_key="bar", method_name="classify",
tags="serve")
updater.save(new_export_dir)
```
Note: This function will only be available through the v1 compatibility
library as tf.compat.v1.saved_model.builder.MethodNameUpdater.
"""
def __init__(self, export_dir):
"""Creates an MethodNameUpdater object.
Args:
export_dir: Directory containing the SavedModel files.
Raises:
IOError: If the saved model file does not exist, or cannot be successfully
parsed.
"""
self._export_dir = export_dir
self._saved_model = loader.parse_saved_model(export_dir)
def replace_method_name(self, signature_key, method_name, tags=None):
"""Replaces the method_name in the specified signature_def.
This will match and replace multiple sig defs iff tags is None (i.e when
multiple `MetaGraph`s have a signature_def with the same key).
If tags is not None, this will only replace a single signature_def in the
`MetaGraph` with matching tags.
Args:
signature_key: Key of the signature_def to be updated.
method_name: new method_name to replace the existing one.
tags: A tag or sequence of tags identifying the `MetaGraph` to update. If
None, all meta graphs will be updated.
Raises:
ValueError: if signature_key or method_name are not defined or
if no metagraphs were found with the associated tags or
if no meta graph has a signature_def that matches signature_key.
"""
if not signature_key:
raise ValueError("signature_key must be defined.")
if not method_name:
raise ValueError("method_name must be defined.")
if (tags is not None and not isinstance(tags, list)):
tags = [tags]
found_match = False
for meta_graph_def in self._saved_model.meta_graphs:
if tags is None or set(tags) == set(meta_graph_def.meta_info_def.tags):
if signature_key not in meta_graph_def.signature_def:
raise ValueError(
"MetaGraphDef associated with tags " + str(tags) +
" does not have a signature_def with key: " + signature_key +
". This means either you specified the wrong signature key or "
"forgot to put the signature_def with the corresponding key in "
"your SavedModel.")
meta_graph_def.signature_def[signature_key].method_name = method_name
found_match = True
if not found_match:
raise ValueError(
"MetaGraphDef associated with tags " + str(tags) +
" could not be found in SavedModel. This means either you specified "
"the invalid tags your SavedModel does not have a MetaGraph with "
"the specified tags")
def save(self, new_export_dir=None):
"""Saves the updated `SavedModel`.
Args:
new_export_dir: Path where the updated `SavedModel` will be saved. If
None, the input `SavedModel` will be overriden with the updates.
Raises:
errors.OpError: If there are errors during the file save operation.
"""
is_input_text_proto = file_io.file_exists(os.path.join(
compat.as_bytes(self._export_dir),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT)))
if not new_export_dir:
new_export_dir = self._export_dir
if is_input_text_proto:
# TODO(jdchung): Add a util for the path creation below.
path = os.path.join(
compat.as_bytes(new_export_dir),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT))
file_io.write_string_to_file(path, str(self._saved_model))
else:
path = os.path.join(
compat.as_bytes(new_export_dir),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB))
file_io.write_string_to_file(
path, self._saved_model.SerializeToString(deterministic=True))
tf_logging.info("SavedModel written to: %s", compat.as_text(path))

View File

@ -0,0 +1,377 @@
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for method name utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
from google.protobuf import text_format
from tensorflow.core.protobuf import saved_model_pb2
from tensorflow.python.lib.io import file_io
from tensorflow.python.platform import test
from tensorflow.python.saved_model import constants
from tensorflow.python.saved_model import loader_impl as loader
from tensorflow.python.saved_model import method_name_updater
from tensorflow.python.util import compat
_SAVED_MODEL_PROTO = text_format.Parse("""
saved_model_schema_version: 1
meta_graphs {
meta_info_def {
tags: "serve"
}
signature_def: {
key: "serving_default"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "predict"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape {
dim { size: -1 }
dim { size: 100 }
}
}
}
}
}
signature_def: {
key: "foo"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "predict"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape { dim { size: 1 } }
}
}
}
}
}
meta_graphs {
meta_info_def {
tags: "serve"
tags: "gpu"
}
signature_def: {
key: "serving_default"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "predict"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape {
dim { size: -1 }
}
}
}
}
}
signature_def: {
key: "bar"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "predict"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape { dim { size: 1 } }
}
}
}
}
}
""", saved_model_pb2.SavedModel())
class MethodNameUpdaterTest(test.TestCase):
def setUp(self):
super(MethodNameUpdaterTest, self).setUp()
self._saved_model_path = tempfile.mkdtemp(prefix=test.get_temp_dir())
def testBasic(self):
path = os.path.join(
compat.as_bytes(self._saved_model_path),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB))
file_io.write_string_to_file(
path, _SAVED_MODEL_PROTO.SerializeToString(deterministic=True))
updater = method_name_updater.MethodNameUpdater(self._saved_model_path)
updater.replace_method_name(
signature_key="serving_default", method_name="classify")
updater.save()
actual = loader.parse_saved_model(self._saved_model_path)
self.assertProtoEquals(
actual,
text_format.Parse(
"""
saved_model_schema_version: 1
meta_graphs {
meta_info_def {
tags: "serve"
}
signature_def: {
key: "serving_default"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "classify"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape {
dim { size: -1 }
dim { size: 100 }
}
}
}
}
}
signature_def: {
key: "foo"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "predict"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape { dim { size: 1 } }
}
}
}
}
}
meta_graphs {
meta_info_def {
tags: "serve"
tags: "gpu"
}
signature_def: {
key: "serving_default"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "classify"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape {
dim { size: -1 }
}
}
}
}
}
signature_def: {
key: "bar"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "predict"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape { dim { size: 1 } }
}
}
}
}
}
""", saved_model_pb2.SavedModel()))
def testTextFormatAndNewExportDir(self):
path = os.path.join(
compat.as_bytes(self._saved_model_path),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT))
file_io.write_string_to_file(path, str(_SAVED_MODEL_PROTO))
updater = method_name_updater.MethodNameUpdater(self._saved_model_path)
updater.replace_method_name(
signature_key="foo", method_name="regress", tags="serve")
updater.replace_method_name(
signature_key="bar", method_name="classify", tags=["gpu", "serve"])
new_export_dir = tempfile.mkdtemp(prefix=test.get_temp_dir())
updater.save(new_export_dir)
self.assertTrue(
file_io.file_exists(
os.path.join(
compat.as_bytes(new_export_dir),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT))))
actual = loader.parse_saved_model(new_export_dir)
self.assertProtoEquals(
actual,
text_format.Parse(
"""
saved_model_schema_version: 1
meta_graphs {
meta_info_def {
tags: "serve"
}
signature_def: {
key: "serving_default"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "predict"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape {
dim { size: -1 }
dim { size: 100 }
}
}
}
}
}
signature_def: {
key: "foo"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "regress"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape { dim { size: 1 } }
}
}
}
}
}
meta_graphs {
meta_info_def {
tags: "serve"
tags: "gpu"
}
signature_def: {
key: "serving_default"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "predict"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape {
dim { size: -1 }
}
}
}
}
}
signature_def: {
key: "bar"
value: {
inputs: {
key: "inputs"
value { name: "input_node:0" }
}
method_name: "classify"
outputs: {
key: "outputs"
value {
dtype: DT_FLOAT
tensor_shape { dim { size: 1 } }
}
}
}
}
}
""", saved_model_pb2.SavedModel()))
def testExceptions(self):
with self.assertRaises(IOError):
updater = method_name_updater.MethodNameUpdater(
tempfile.mkdtemp(prefix=test.get_temp_dir()))
path = os.path.join(
compat.as_bytes(self._saved_model_path),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB))
file_io.write_string_to_file(
path, _SAVED_MODEL_PROTO.SerializeToString(deterministic=True))
updater = method_name_updater.MethodNameUpdater(self._saved_model_path)
with self.assertRaisesRegex(ValueError, "signature_key must be defined"):
updater.replace_method_name(
signature_key=None, method_name="classify")
with self.assertRaisesRegex(ValueError, "method_name must be defined"):
updater.replace_method_name(
signature_key="foobar", method_name="")
with self.assertRaisesRegex(
ValueError,
r"MetaGraphDef associated with tags \['gpu'\] could not be found"):
updater.replace_method_name(
signature_key="bar", method_name="classify", tags=["gpu"])
with self.assertRaisesRegex(
ValueError, r"MetaGraphDef associated with tags \['serve'\] does not "
r"have a signature_def with key: baz"):
updater.replace_method_name(
signature_key="baz", method_name="classify", tags=["serve"])
if __name__ == "__main__":
test.main()

View File

@ -25,6 +25,7 @@ from tensorflow.python.saved_model import builder
from tensorflow.python.saved_model import constants
from tensorflow.python.saved_model import loader
from tensorflow.python.saved_model import main_op
from tensorflow.python.saved_model import method_name_updater
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import signature_def_utils
from tensorflow.python.saved_model import tag_constants

View File

@ -0,0 +1,17 @@
path: "tensorflow.saved_model.signature_def_utils.MethodNameUpdater"
tf_class {
is_instance: "<class \'tensorflow.python.saved_model.method_name_updater.MethodNameUpdater\'>"
is_instance: "<type \'object\'>"
member_method {
name: "__init__"
argspec: "args=[\'self\', \'export_dir\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "replace_method_name"
argspec: "args=[\'self\', \'signature_key\', \'method_name\', \'tags\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "save"
argspec: "args=[\'self\', \'new_export_dir\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
}

View File

@ -1,5 +1,9 @@
path: "tensorflow.saved_model.signature_def_utils"
tf_module {
member {
name: "MethodNameUpdater"
mtype: "<type \'type\'>"
}
member_method {
name: "build_signature_def"
argspec: "args=[\'inputs\', \'outputs\', \'method_name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], "

View File

@ -1082,6 +1082,8 @@ renames = {
'tf.saved_model.REGRESS_METHOD_NAME',
'tf.saved_model.signature_constants.REGRESS_OUTPUTS':
'tf.saved_model.REGRESS_OUTPUTS',
'tf.saved_model.signature_def_utils.MethodNameUpdater':
'tf.compat.v1.saved_model.signature_def_utils.MethodNameUpdater',
'tf.saved_model.signature_def_utils.build_signature_def':
'tf.compat.v1.saved_model.signature_def_utils.build_signature_def',
'tf.saved_model.signature_def_utils.classification_signature_def':