Relax limitations on rerouting graph outputs.
- Allow multiple outputs of output_tensors in fold_batch_norms. - Allow duplicate consumers in quantize. - I also quick a fix issue for matching final layers that have batch norm. PiperOrigin-RevId: 190873003
This commit is contained in:
parent
2b41d75654
commit
a5a90e6b55
@ -134,9 +134,9 @@ def _FoldFusedBatchNorms(graph, is_training, freeze_batch_norm_delay):
|
||||
|
||||
nodes_modified_count = graph_editor.reroute_ts(bias_add_tensor,
|
||||
match.output_tensor)
|
||||
if nodes_modified_count != 1:
|
||||
raise ValueError(
|
||||
'Unexpected inputs to op: %s' % match.output_tensor.name)
|
||||
if nodes_modified_count == 0:
|
||||
raise ValueError('Folding batch norms failed, %s had no outputs.' %
|
||||
match.output_tensor.name)
|
||||
|
||||
|
||||
def _FindFusedBatchNorms(graph):
|
||||
|
@ -305,7 +305,8 @@ def _FindLayersToQuantize(graph):
|
||||
# the output of the final BiasAdd must be quantized. So we treat the BiasAdd
|
||||
# as the 'activation_op' in the _LayerMatch, to ensure that it's output is
|
||||
# quantized.
|
||||
final_layer_matcher = graph_matcher.GraphMatcher(bias_add_pattern)
|
||||
final_layer_matcher = graph_matcher.GraphMatcher(
|
||||
graph_matcher.OneofPattern([bias_add_pattern, folded_bias_add_pattern]))
|
||||
for match_result in final_layer_matcher.match_graph(graph):
|
||||
layer_op = match_result.get_op(layer_pattern)
|
||||
weight_tensor = match_result.get_tensor(weight_identity_pattern)
|
||||
@ -463,11 +464,16 @@ def _InsertQuantOp(context,
|
||||
lambda: inputs,
|
||||
name=name_prefix + '/delayed_quant')
|
||||
|
||||
nodes_modified_count = graph_editor.reroute_ts(
|
||||
[quant], [inputs], can_modify=consumers)
|
||||
if nodes_modified_count != len(consumers):
|
||||
raise ValueError('Some inputs not quantized for ops: [%s]' % ', '.join(
|
||||
[consumer.name for consumer in consumers]))
|
||||
if consumers:
|
||||
tensors_modified_count = graph_editor.reroute_ts(
|
||||
[quant], [inputs], can_modify=consumers)
|
||||
# Some operations can have multiple output tensors going to the same
|
||||
# consumer. Since consumers is a set, we need to ensure that
|
||||
# tensors_modified_count is greater than or equal to the length of the set
|
||||
# of consumers.
|
||||
if tensors_modified_count < len(consumers):
|
||||
raise ValueError('No inputs quantized for ops: [%s]' % ', '.join(
|
||||
[consumer.name for consumer in consumers]))
|
||||
|
||||
|
||||
def _GetContextFromOp(op):
|
||||
|
Loading…
Reference in New Issue
Block a user