Add distribution strategy tests for premade models.
PiperOrigin-RevId: 261197895
This commit is contained in:
parent
ebe2e50f36
commit
a5540aeb21
@ -97,6 +97,21 @@ py_library(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
distribute_py_test(
|
||||||
|
name = "keras_premade_models_test",
|
||||||
|
srcs = ["keras_premade_models_test.py"],
|
||||||
|
full_precision = True,
|
||||||
|
main = "keras_premade_models_test.py",
|
||||||
|
shard_count = 4,
|
||||||
|
tags = [
|
||||||
|
"multi_and_single_gpu",
|
||||||
|
],
|
||||||
|
deps = [
|
||||||
|
":distribute_strategy_test_lib",
|
||||||
|
":keras_correctness_test_lib",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
distribute_py_test(
|
distribute_py_test(
|
||||||
name = "distribute_strategy_test",
|
name = "distribute_strategy_test",
|
||||||
srcs = ["distribute_strategy_test.py"],
|
srcs = ["distribute_strategy_test.py"],
|
||||||
|
@ -0,0 +1,96 @@
|
|||||||
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
"""Tests for keras premade models using tf.distribute.Strategy."""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from absl.testing import parameterized
|
||||||
|
import numpy as np
|
||||||
|
from tensorflow.python.data.ops import dataset_ops
|
||||||
|
from tensorflow.python.distribute import combinations
|
||||||
|
from tensorflow.python.distribute import strategy_combinations
|
||||||
|
from tensorflow.python.eager import test
|
||||||
|
from tensorflow.python.keras.engine import sequential
|
||||||
|
from tensorflow.python.keras.layers import core
|
||||||
|
from tensorflow.python.keras.optimizer_v2 import adagrad
|
||||||
|
from tensorflow.python.keras.optimizer_v2 import gradient_descent
|
||||||
|
from tensorflow.python.keras.premade import linear
|
||||||
|
from tensorflow.python.keras.premade import wide_deep
|
||||||
|
|
||||||
|
|
||||||
|
def strategy_combinations_eager_data_fn():
|
||||||
|
return combinations.combine(
|
||||||
|
distribution=[
|
||||||
|
strategy_combinations.default_strategy,
|
||||||
|
strategy_combinations.one_device_strategy,
|
||||||
|
strategy_combinations.one_device_strategy_gpu,
|
||||||
|
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
|
||||||
|
strategy_combinations.mirrored_strategy_with_two_gpus
|
||||||
|
],
|
||||||
|
mode=['eager'],
|
||||||
|
data_fn=[get_numpy, get_dataset])
|
||||||
|
|
||||||
|
|
||||||
|
def get_numpy():
|
||||||
|
inputs = np.random.uniform(low=-5, high=5, size=(64, 2)).astype(np.float32)
|
||||||
|
output = .3 * inputs[:, 0] + .2 * inputs[:, 1]
|
||||||
|
return inputs, output
|
||||||
|
|
||||||
|
|
||||||
|
def get_dataset():
|
||||||
|
inputs, output = get_numpy()
|
||||||
|
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, output))
|
||||||
|
dataset = dataset.batch(10).repeat(10)
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
|
class KerasPremadeModelsTest(test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
|
@combinations.generate(strategy_combinations_eager_data_fn())
|
||||||
|
def test_linear_model(self, distribution, data_fn):
|
||||||
|
with distribution.scope():
|
||||||
|
model = linear.LinearModel()
|
||||||
|
opt = gradient_descent.SGD(learning_rate=0.1)
|
||||||
|
model.compile(opt, 'mse', experimental_run_tf_function=True)
|
||||||
|
if data_fn == get_numpy:
|
||||||
|
inputs, output = get_numpy()
|
||||||
|
hist = model.fit(inputs, output, epochs=5)
|
||||||
|
else:
|
||||||
|
hist = model.fit(get_dataset(), epochs=5)
|
||||||
|
self.assertLess(hist.history['loss'][4], 0.1)
|
||||||
|
|
||||||
|
@combinations.generate(strategy_combinations_eager_data_fn())
|
||||||
|
def test_wide_deep_model(self, distribution, data_fn):
|
||||||
|
with distribution.scope():
|
||||||
|
linear_model = linear.LinearModel(units=1)
|
||||||
|
dnn_model = sequential.Sequential([core.Dense(units=1)])
|
||||||
|
wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
|
||||||
|
linear_opt = gradient_descent.SGD(learning_rate=0.1)
|
||||||
|
dnn_opt = adagrad.Adagrad(learning_rate=0.2)
|
||||||
|
wide_deep_model.compile(
|
||||||
|
optimizer=[linear_opt, dnn_opt],
|
||||||
|
loss='mse',
|
||||||
|
experimental_run_tf_function=True)
|
||||||
|
if data_fn == get_numpy:
|
||||||
|
inputs, output = get_numpy()
|
||||||
|
hist = wide_deep_model.fit(inputs, output, epochs=5)
|
||||||
|
else:
|
||||||
|
hist = wide_deep_model.fit(get_dataset(), epochs=5)
|
||||||
|
self.assertLess(hist.history['loss'][4], 0.2)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test.main()
|
Loading…
x
Reference in New Issue
Block a user