Merge pull request #46709 from advaitjain:softmax-refactor
PiperOrigin-RevId: 353952307 Change-Id: Iefcc2d4f8d28693a25aafd4c5ce3a35592a671ce
This commit is contained in:
		
						commit
						a4c269747a
					
				| @ -132,6 +132,7 @@ cc_library( | |||||||
|         "resize_nearest_neighbor.cc", |         "resize_nearest_neighbor.cc", | ||||||
|         "round.cc", |         "round.cc", | ||||||
|         "shape.cc", |         "shape.cc", | ||||||
|  |         "softmax_common.cc", | ||||||
|         "split.cc", |         "split.cc", | ||||||
|         "split_v.cc", |         "split_v.cc", | ||||||
|         "strided_slice.cc", |         "strided_slice.cc", | ||||||
| @ -159,6 +160,7 @@ cc_library( | |||||||
|     hdrs = [ |     hdrs = [ | ||||||
|         "micro_ops.h", |         "micro_ops.h", | ||||||
|         "quantize.h", |         "quantize.h", | ||||||
|  |         "softmax.h", | ||||||
|         "svdf.h", |         "svdf.h", | ||||||
|     ], |     ], | ||||||
|     copts = micro_copts(), |     copts = micro_copts(), | ||||||
|  | |||||||
| @ -1,4 +1,4 @@ | |||||||
| /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
 | /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
 | ||||||
| 
 | 
 | ||||||
| Licensed under the Apache License, Version 2.0 (the "License"); | Licensed under the Apache License, Version 2.0 (the "License"); | ||||||
| you may not use this file except in compliance with the License. | you may not use this file except in compliance with the License. | ||||||
| @ -13,12 +13,13 @@ See the License for the specific language governing permissions and | |||||||
| limitations under the License. | limitations under the License. | ||||||
| ==============================================================================*/ | ==============================================================================*/ | ||||||
| 
 | 
 | ||||||
| #include "tensorflow/lite/kernels/internal/reference/softmax.h" | #include "tensorflow/lite/micro/kernels/softmax.h" | ||||||
| 
 | 
 | ||||||
| #include "CMSIS/NN/Include/arm_nnfunctions.h" | #include "CMSIS/NN/Include/arm_nnfunctions.h" | ||||||
| #include "tensorflow/lite/c/common.h" | #include "tensorflow/lite/c/common.h" | ||||||
| #include "tensorflow/lite/kernels/internal/common.h" | #include "tensorflow/lite/kernels/internal/common.h" | ||||||
| #include "tensorflow/lite/kernels/internal/quantization_util.h" | #include "tensorflow/lite/kernels/internal/quantization_util.h" | ||||||
|  | #include "tensorflow/lite/kernels/internal/reference/softmax.h" | ||||||
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" | #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" | ||||||
| #include "tensorflow/lite/kernels/kernel_util.h" | #include "tensorflow/lite/kernels/kernel_util.h" | ||||||
| #include "tensorflow/lite/kernels/op_macros.h" | #include "tensorflow/lite/kernels/op_macros.h" | ||||||
| @ -27,131 +28,6 @@ limitations under the License. | |||||||
| namespace tflite { | namespace tflite { | ||||||
| namespace { | namespace { | ||||||
| 
 | 
 | ||||||
| // Softmax parameter data that persists in user_data
 |  | ||||||
| static constexpr int kInt16LUTArraySize = 513; |  | ||||||
| 
 |  | ||||||
| TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context, |  | ||||||
|                                     const TfLiteTensor* input, |  | ||||||
|                                     TfLiteTensor* output, |  | ||||||
|                                     const TfLiteSoftmaxParams* params, |  | ||||||
|                                     SoftmaxParams* op_data) { |  | ||||||
|   if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 || |  | ||||||
|       input->type == kTfLiteInt16) { |  | ||||||
|     if (input->type == kTfLiteUInt8) { |  | ||||||
|       TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8); |  | ||||||
|       TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); |  | ||||||
|     } else if (input->type == kTfLiteInt16) { |  | ||||||
|       TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); |  | ||||||
|       TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768, |  | ||||||
|                           (0.001f * 1.f / 32768)); |  | ||||||
|     } else {  // input->type == kTfLiteInt8
 |  | ||||||
|       TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8); |  | ||||||
|       if (output->type == kTfLiteInt16) { |  | ||||||
|         TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768); |  | ||||||
|         TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536, |  | ||||||
|                             (0.001f * 1.f / 65536)); |  | ||||||
|       } else {  // output->type == kTfLiteint8
 |  | ||||||
|         TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8); |  | ||||||
|         TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128); |  | ||||||
|         TF_LITE_ENSURE(context, output->params.scale == 1.f / 256); |  | ||||||
|       } |  | ||||||
|     } |  | ||||||
| 
 |  | ||||||
|     static const int kScaledDiffIntegerBits = 5; |  | ||||||
| 
 |  | ||||||
|     // Calculate input_multiplier and input_left_shift
 |  | ||||||
|     if (input->type == kTfLiteInt16) { |  | ||||||
|       int input_left_shift; |  | ||||||
|       double input_scale_beta_rescale = |  | ||||||
|           static_cast<double>(input->params.scale) * |  | ||||||
|           static_cast<double>(params->beta) / |  | ||||||
|           (10.0 / 65535.0);  // scale the input_diff such that [-65535, 0]
 |  | ||||||
|                              // correspond to [-10.0, 0.0]
 |  | ||||||
|       QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier, |  | ||||||
|                          &input_left_shift); |  | ||||||
|       op_data->input_left_shift = input_left_shift; |  | ||||||
|     } else { |  | ||||||
|       int input_left_shift; |  | ||||||
|       tflite::PreprocessSoftmaxScaling( |  | ||||||
|           static_cast<double>(params->beta), |  | ||||||
|           static_cast<double>(input->params.scale), kScaledDiffIntegerBits, |  | ||||||
|           &op_data->input_multiplier, &input_left_shift); |  | ||||||
|       op_data->input_left_shift = input_left_shift; |  | ||||||
|       op_data->diff_min = |  | ||||||
|           -1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits, |  | ||||||
|                                               op_data->input_left_shift); |  | ||||||
|     } |  | ||||||
|   } else { |  | ||||||
|     TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); |  | ||||||
|     TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); |  | ||||||
|     op_data->beta = static_cast<double>(params->beta); |  | ||||||
|   } |  | ||||||
|   return kTfLiteOk; |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) { |  | ||||||
|   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |  | ||||||
|   return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams)); |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { |  | ||||||
|   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |  | ||||||
|   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |  | ||||||
|   const TfLiteTensor* input = GetInput(context, node, 0); |  | ||||||
|   TF_LITE_ENSURE(context, input != nullptr); |  | ||||||
|   TF_LITE_ENSURE(context, NumDimensions(input) >= 1); |  | ||||||
|   TfLiteTensor* output = GetOutput(context, node, 0); |  | ||||||
|   TF_LITE_ENSURE(context, output != nullptr); |  | ||||||
| 
 |  | ||||||
|   TF_LITE_ENSURE(context, node->user_data != nullptr); |  | ||||||
|   SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data); |  | ||||||
|   // Only allocate LUTs for KTfLiteInt16 data type
 |  | ||||||
|   if (input->type == kTfLiteInt16) { |  | ||||||
|     void* raw_exp_lut = context->AllocatePersistentBuffer( |  | ||||||
|         context, sizeof(int16_t) * kInt16LUTArraySize); |  | ||||||
|     TF_LITE_ENSURE(context, raw_exp_lut != nullptr); |  | ||||||
|     op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut); |  | ||||||
|     void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer( |  | ||||||
|         context, sizeof(int16_t) * kInt16LUTArraySize); |  | ||||||
|     TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr); |  | ||||||
|     op_data->one_over_one_plus_x_lut = |  | ||||||
|         reinterpret_cast<int16_t*>(one_over_one_plus_x_lut); |  | ||||||
|   } |  | ||||||
| 
 |  | ||||||
|   if (output->type == kTfLiteInt16) { |  | ||||||
|     TF_LITE_ENSURE(context, input->type == kTfLiteInt8 || |  | ||||||
|                                 input->type == kTfLiteUInt8 || |  | ||||||
|                                 input->type == kTfLiteInt16); |  | ||||||
|   } else { |  | ||||||
|     TF_LITE_ENSURE_EQ(context, input->type, output->type); |  | ||||||
|   } |  | ||||||
| 
 |  | ||||||
|   // Populate LUT if required
 |  | ||||||
|   if (input->type == kTfLiteInt16) { |  | ||||||
|     TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); |  | ||||||
|     // exp LUT only used on negative values
 |  | ||||||
|     // we consider exp(-10.0) is insignificant to accumulation
 |  | ||||||
|     gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f, |  | ||||||
|             op_data->exp_lut, kInt16LUTArraySize); |  | ||||||
|     gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f, |  | ||||||
|             op_data->one_over_one_plus_x_lut, kInt16LUTArraySize); |  | ||||||
|     op_data->zero_point = output->params.zero_point; |  | ||||||
|     op_data->scale = output->params.scale; |  | ||||||
|   } |  | ||||||
| 
 |  | ||||||
|   auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data); |  | ||||||
|   return CalculateSoftmaxParams(context, input, output, params, op_data); |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| // Takes a tensor and performs softmax along the last dimension.
 |  | ||||||
| void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, |  | ||||||
|                   const SoftmaxParams& op_data) { |  | ||||||
|   tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input), |  | ||||||
|                                  tflite::micro::GetTensorData<float>(input), |  | ||||||
|                                  tflite::micro::GetTensorShape(output), |  | ||||||
|                                  tflite::micro::GetTensorData<float>(output)); |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, | void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, | ||||||
|                       const SoftmaxParams& op_data) { |                       const SoftmaxParams& op_data) { | ||||||
|   if (input->type == kTfLiteUInt8) { |   if (input->type == kTfLiteUInt8) { | ||||||
| @ -200,7 +76,11 @@ TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { | |||||||
| 
 | 
 | ||||||
|   switch (input->type) { |   switch (input->type) { | ||||||
|     case kTfLiteFloat32: { |     case kTfLiteFloat32: { | ||||||
|       SoftmaxFloat(input, output, data); |       tflite::reference_ops::Softmax( | ||||||
|  |           data, tflite::micro::GetTensorShape(input), | ||||||
|  |           tflite::micro::GetTensorData<float>(input), | ||||||
|  |           tflite::micro::GetTensorShape(output), | ||||||
|  |           tflite::micro::GetTensorData<float>(output)); | ||||||
|       return kTfLiteOk; |       return kTfLiteOk; | ||||||
|     } |     } | ||||||
|     case kTfLiteInt8: |     case kTfLiteInt8: | ||||||
|  | |||||||
| @ -1,4 +1,4 @@ | |||||||
| /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
 | /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
 | ||||||
| 
 | 
 | ||||||
| Licensed under the Apache License, Version 2.0 (the "License"); | Licensed under the Apache License, Version 2.0 (the "License"); | ||||||
| you may not use this file except in compliance with the License. | you may not use this file except in compliance with the License. | ||||||
| @ -13,12 +13,13 @@ See the License for the specific language governing permissions and | |||||||
| limitations under the License. | limitations under the License. | ||||||
| ==============================================================================*/ | ==============================================================================*/ | ||||||
| 
 | 
 | ||||||
| #include "tensorflow/lite/kernels/internal/reference/softmax.h" | #include "tensorflow/lite/micro/kernels/softmax.h" | ||||||
| 
 | 
 | ||||||
| #include "tensorflow/lite/c/builtin_op_data.h" | #include "tensorflow/lite/c/builtin_op_data.h" | ||||||
| #include "tensorflow/lite/c/common.h" | #include "tensorflow/lite/c/common.h" | ||||||
| #include "tensorflow/lite/kernels/internal/common.h" | #include "tensorflow/lite/kernels/internal/common.h" | ||||||
| #include "tensorflow/lite/kernels/internal/quantization_util.h" | #include "tensorflow/lite/kernels/internal/quantization_util.h" | ||||||
|  | #include "tensorflow/lite/kernels/internal/reference/softmax.h" | ||||||
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" | #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" | ||||||
| #include "tensorflow/lite/kernels/kernel_util.h" | #include "tensorflow/lite/kernels/kernel_util.h" | ||||||
| #include "tensorflow/lite/kernels/op_macros.h" | #include "tensorflow/lite/kernels/op_macros.h" | ||||||
| @ -27,77 +28,6 @@ limitations under the License. | |||||||
| namespace tflite { | namespace tflite { | ||||||
| namespace { | namespace { | ||||||
| 
 | 
 | ||||||
| // Softmax parameter data that persists in user_data
 |  | ||||||
| static constexpr int kInt16LUTArraySize = 513; |  | ||||||
| 
 |  | ||||||
| TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context, |  | ||||||
|                                     const TfLiteTensor* input, |  | ||||||
|                                     TfLiteTensor* output, |  | ||||||
|                                     const TfLiteSoftmaxParams* params, |  | ||||||
|                                     SoftmaxParams* op_data) { |  | ||||||
|   if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 || |  | ||||||
|       input->type == kTfLiteInt16) { |  | ||||||
|     if (input->type == kTfLiteUInt8) { |  | ||||||
|       TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8); |  | ||||||
|       TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); |  | ||||||
|     } else if (input->type == kTfLiteInt16) { |  | ||||||
|       TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); |  | ||||||
|       TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768, |  | ||||||
|                           (0.001f * 1.f / 32768)); |  | ||||||
|     } else {  // input->type == kTfLiteInt8
 |  | ||||||
|       TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8); |  | ||||||
|       if (output->type == kTfLiteInt16) { |  | ||||||
|         TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768); |  | ||||||
|         TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536, |  | ||||||
|                             (0.001f * 1.f / 65536)); |  | ||||||
|       } else {  // output->type == kTfLiteint8
 |  | ||||||
|         TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8); |  | ||||||
|         TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128); |  | ||||||
|         TF_LITE_ENSURE(context, output->params.scale == 1.f / 256); |  | ||||||
|       } |  | ||||||
|     } |  | ||||||
| 
 |  | ||||||
|     static const int kScaledDiffIntegerBits = 5; |  | ||||||
| 
 |  | ||||||
|     // Calculate input_multiplier and input_left_shift
 |  | ||||||
|     if (input->type == kTfLiteInt16) { |  | ||||||
|       int input_left_shift; |  | ||||||
|       double input_scale_beta_rescale = |  | ||||||
|           static_cast<double>(input->params.scale) * |  | ||||||
|           static_cast<double>(params->beta) / |  | ||||||
|           (10.0 / 65535.0);  // scale the input_diff such that [-65535, 0]
 |  | ||||||
|                              // correspond to [-10.0, 0.0]
 |  | ||||||
|       QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier, |  | ||||||
|                          &input_left_shift); |  | ||||||
|       op_data->input_left_shift = input_left_shift; |  | ||||||
|     } else { |  | ||||||
|       int input_left_shift; |  | ||||||
|       tflite::PreprocessSoftmaxScaling( |  | ||||||
|           static_cast<double>(params->beta), |  | ||||||
|           static_cast<double>(input->params.scale), kScaledDiffIntegerBits, |  | ||||||
|           &op_data->input_multiplier, &input_left_shift); |  | ||||||
|       op_data->input_left_shift = input_left_shift; |  | ||||||
|       op_data->diff_min = |  | ||||||
|           -1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits, |  | ||||||
|                                               op_data->input_left_shift); |  | ||||||
|     } |  | ||||||
|   } else { |  | ||||||
|     TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); |  | ||||||
|     TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); |  | ||||||
|     op_data->beta = static_cast<double>(params->beta); |  | ||||||
|   } |  | ||||||
|   return kTfLiteOk; |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| // Takes a tensor and performs softmax along the last dimension.
 |  | ||||||
| void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, |  | ||||||
|                   const SoftmaxParams& op_data) { |  | ||||||
|   tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input), |  | ||||||
|                                  tflite::micro::GetTensorData<float>(input), |  | ||||||
|                                  tflite::micro::GetTensorShape(output), |  | ||||||
|                                  tflite::micro::GetTensorData<float>(output)); |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, | void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, | ||||||
|                       const SoftmaxParams& op_data) { |                       const SoftmaxParams& op_data) { | ||||||
|   if (input->type == kTfLiteUInt8) { |   if (input->type == kTfLiteUInt8) { | ||||||
| @ -129,60 +59,6 @@ void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, | |||||||
|   } |   } | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) { |  | ||||||
|   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |  | ||||||
|   return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams)); |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { |  | ||||||
|   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |  | ||||||
|   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |  | ||||||
|   const TfLiteTensor* input = GetInput(context, node, 0); |  | ||||||
|   TF_LITE_ENSURE(context, input != nullptr); |  | ||||||
|   TF_LITE_ENSURE(context, NumDimensions(input) >= 1); |  | ||||||
|   TfLiteTensor* output = GetOutput(context, node, 0); |  | ||||||
|   TF_LITE_ENSURE(context, output != nullptr); |  | ||||||
| 
 |  | ||||||
|   TF_LITE_ENSURE(context, node->user_data != nullptr); |  | ||||||
|   SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data); |  | ||||||
|   // Only allocate LUTs for KTfLiteInt16 data type
 |  | ||||||
|   if (input->type == kTfLiteInt16) { |  | ||||||
|     void* raw_exp_lut = context->AllocatePersistentBuffer( |  | ||||||
|         context, sizeof(int16_t) * kInt16LUTArraySize); |  | ||||||
|     TF_LITE_ENSURE(context, raw_exp_lut != nullptr); |  | ||||||
|     op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut); |  | ||||||
|     void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer( |  | ||||||
|         context, sizeof(int16_t) * kInt16LUTArraySize); |  | ||||||
|     TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr); |  | ||||||
|     op_data->one_over_one_plus_x_lut = |  | ||||||
|         reinterpret_cast<int16_t*>(one_over_one_plus_x_lut); |  | ||||||
|   } |  | ||||||
| 
 |  | ||||||
|   if (output->type == kTfLiteInt16) { |  | ||||||
|     TF_LITE_ENSURE(context, input->type == kTfLiteInt8 || |  | ||||||
|                                 input->type == kTfLiteUInt8 || |  | ||||||
|                                 input->type == kTfLiteInt16); |  | ||||||
|   } else { |  | ||||||
|     TF_LITE_ENSURE_EQ(context, input->type, output->type); |  | ||||||
|   } |  | ||||||
| 
 |  | ||||||
|   // Populate LUT if required
 |  | ||||||
|   if (input->type == kTfLiteInt16) { |  | ||||||
|     TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); |  | ||||||
|     // exp LUT only used on negative values
 |  | ||||||
|     // we consider exp(-10.0) is insignificant to accumulation
 |  | ||||||
|     gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f, |  | ||||||
|             op_data->exp_lut, kInt16LUTArraySize); |  | ||||||
|     gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f, |  | ||||||
|             op_data->one_over_one_plus_x_lut, kInt16LUTArraySize); |  | ||||||
|     op_data->zero_point = output->params.zero_point; |  | ||||||
|     op_data->scale = output->params.scale; |  | ||||||
|   } |  | ||||||
| 
 |  | ||||||
|   auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data); |  | ||||||
|   return CalculateSoftmaxParams(context, input, output, params, op_data); |  | ||||||
| } |  | ||||||
| 
 |  | ||||||
| TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { | TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { | ||||||
|   const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); |   const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); | ||||||
|   TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |   TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); | ||||||
| @ -192,7 +68,11 @@ TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { | |||||||
| 
 | 
 | ||||||
|   switch (input->type) { |   switch (input->type) { | ||||||
|     case kTfLiteFloat32: { |     case kTfLiteFloat32: { | ||||||
|       SoftmaxFloat(input, output, op_data); |       tflite::reference_ops::Softmax( | ||||||
|  |           op_data, tflite::micro::GetTensorShape(input), | ||||||
|  |           tflite::micro::GetTensorData<float>(input), | ||||||
|  |           tflite::micro::GetTensorShape(output), | ||||||
|  |           tflite::micro::GetTensorData<float>(output)); | ||||||
|       return kTfLiteOk; |       return kTfLiteOk; | ||||||
|     } |     } | ||||||
|     case kTfLiteInt8: |     case kTfLiteInt8: | ||||||
|  | |||||||
							
								
								
									
										30
									
								
								tensorflow/lite/micro/kernels/softmax.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								tensorflow/lite/micro/kernels/softmax.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,30 @@ | |||||||
|  | /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
 | ||||||
|  | 
 | ||||||
|  | Licensed under the Apache License, Version 2.0 (the "License"); | ||||||
|  | you may not use this file except in compliance with the License. | ||||||
|  | You may obtain a copy of the License at | ||||||
|  | 
 | ||||||
|  |     http://www.apache.org/licenses/LICENSE-2.0
 | ||||||
|  | 
 | ||||||
|  | Unless required by applicable law or agreed to in writing, software | ||||||
|  | distributed under the License is distributed on an "AS IS" BASIS, | ||||||
|  | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||
|  | See the License for the specific language governing permissions and | ||||||
|  | limitations under the License. | ||||||
|  | ==============================================================================*/ | ||||||
|  | #ifndef TENSORFLOW_LITE_MICRO_KERNELS_SOFTMAX_H_ | ||||||
|  | #define TENSORFLOW_LITE_MICRO_KERNELS_SOFTMAX_H_ | ||||||
|  | 
 | ||||||
|  | #include "tensorflow/lite/c/builtin_op_data.h" | ||||||
|  | #include "tensorflow/lite/c/common.h" | ||||||
|  | #include "tensorflow/lite/kernels/internal/types.h" | ||||||
|  | 
 | ||||||
|  | namespace tflite { | ||||||
|  | 
 | ||||||
|  | void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length); | ||||||
|  | 
 | ||||||
|  | TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node); | ||||||
|  | 
 | ||||||
|  | }  // namespace tflite
 | ||||||
|  | 
 | ||||||
|  | #endif  // TENSORFLOW_LITE_MICRO_KERNELS_SOFTMAX_H_
 | ||||||
							
								
								
									
										145
									
								
								tensorflow/lite/micro/kernels/softmax_common.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										145
									
								
								tensorflow/lite/micro/kernels/softmax_common.cc
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,145 @@ | |||||||
|  | /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
 | ||||||
|  | 
 | ||||||
|  | Licensed under the Apache License, Version 2.0 (the "License"); | ||||||
|  | you may not use this file except in compliance with the License. | ||||||
|  | You may obtain a copy of the License at | ||||||
|  | 
 | ||||||
|  |     http://www.apache.org/licenses/LICENSE-2.0
 | ||||||
|  | 
 | ||||||
|  | Unless required by applicable law or agreed to in writing, software | ||||||
|  | distributed under the License is distributed on an "AS IS" BASIS, | ||||||
|  | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||
|  | See the License for the specific language governing permissions and | ||||||
|  | limitations under the License. | ||||||
|  | ==============================================================================*/ | ||||||
|  | 
 | ||||||
|  | #include "tensorflow/lite/c/builtin_op_data.h" | ||||||
|  | #include "tensorflow/lite/c/common.h" | ||||||
|  | #include "tensorflow/lite/kernels/internal/common.h" | ||||||
|  | #include "tensorflow/lite/kernels/internal/quantization_util.h" | ||||||
|  | #include "tensorflow/lite/kernels/kernel_util.h" | ||||||
|  | #include "tensorflow/lite/kernels/op_macros.h" | ||||||
|  | #include "tensorflow/lite/micro/kernels/softmax.h" | ||||||
|  | 
 | ||||||
|  | namespace tflite { | ||||||
|  | 
 | ||||||
|  | namespace { | ||||||
|  | // Softmax parameter data that persists in user_data
 | ||||||
|  | const int kInt16LUTArraySize = 513; | ||||||
|  | 
 | ||||||
|  | TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context, | ||||||
|  |                                     const TfLiteTensor* input, | ||||||
|  |                                     TfLiteTensor* output, | ||||||
|  |                                     const TfLiteSoftmaxParams* params, | ||||||
|  |                                     SoftmaxParams* op_data) { | ||||||
|  |   if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 || | ||||||
|  |       input->type == kTfLiteInt16) { | ||||||
|  |     if (input->type == kTfLiteUInt8) { | ||||||
|  |       TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8); | ||||||
|  |       TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); | ||||||
|  |     } else if (input->type == kTfLiteInt16) { | ||||||
|  |       TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); | ||||||
|  |       TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768, | ||||||
|  |                           (0.001f * 1.f / 32768)); | ||||||
|  |     } else {  // input->type == kTfLiteInt8
 | ||||||
|  |       TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8); | ||||||
|  |       if (output->type == kTfLiteInt16) { | ||||||
|  |         TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768); | ||||||
|  |         TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536, | ||||||
|  |                             (0.001f * 1.f / 65536)); | ||||||
|  |       } else {  // output->type == kTfLiteint8
 | ||||||
|  |         TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8); | ||||||
|  |         TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128); | ||||||
|  |         TF_LITE_ENSURE(context, output->params.scale == 1.f / 256); | ||||||
|  |       } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     static const int kScaledDiffIntegerBits = 5; | ||||||
|  | 
 | ||||||
|  |     // Calculate input_multiplier and input_left_shift
 | ||||||
|  |     if (input->type == kTfLiteInt16) { | ||||||
|  |       int input_left_shift; | ||||||
|  |       double input_scale_beta_rescale = | ||||||
|  |           static_cast<double>(input->params.scale) * | ||||||
|  |           static_cast<double>(params->beta) / | ||||||
|  |           (10.0 / 65535.0);  // scale the input_diff such that [-65535, 0]
 | ||||||
|  |                              // correspond to [-10.0, 0.0]
 | ||||||
|  |       QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier, | ||||||
|  |                          &input_left_shift); | ||||||
|  |       op_data->input_left_shift = input_left_shift; | ||||||
|  |     } else { | ||||||
|  |       int input_left_shift; | ||||||
|  |       tflite::PreprocessSoftmaxScaling( | ||||||
|  |           static_cast<double>(params->beta), | ||||||
|  |           static_cast<double>(input->params.scale), kScaledDiffIntegerBits, | ||||||
|  |           &op_data->input_multiplier, &input_left_shift); | ||||||
|  |       op_data->input_left_shift = input_left_shift; | ||||||
|  |       op_data->diff_min = | ||||||
|  |           -1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits, | ||||||
|  |                                               op_data->input_left_shift); | ||||||
|  |     } | ||||||
|  |   } else { | ||||||
|  |     TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); | ||||||
|  |     TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); | ||||||
|  |     op_data->beta = static_cast<double>(params->beta); | ||||||
|  |   } | ||||||
|  |   return kTfLiteOk; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | }  // namespace
 | ||||||
|  | 
 | ||||||
|  | void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) { | ||||||
|  |   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); | ||||||
|  |   return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams)); | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { | ||||||
|  |   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); | ||||||
|  |   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); | ||||||
|  |   const TfLiteTensor* input = GetInput(context, node, 0); | ||||||
|  |   TF_LITE_ENSURE(context, input != nullptr); | ||||||
|  |   TF_LITE_ENSURE(context, NumDimensions(input) >= 1); | ||||||
|  |   TfLiteTensor* output = GetOutput(context, node, 0); | ||||||
|  |   TF_LITE_ENSURE(context, output != nullptr); | ||||||
|  | 
 | ||||||
|  |   TF_LITE_ENSURE(context, node->user_data != nullptr); | ||||||
|  |   SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data); | ||||||
|  |   // Only allocate LUTs for KTfLiteInt16 data type
 | ||||||
|  |   if (input->type == kTfLiteInt16) { | ||||||
|  |     void* raw_exp_lut = context->AllocatePersistentBuffer( | ||||||
|  |         context, sizeof(int16_t) * kInt16LUTArraySize); | ||||||
|  |     TF_LITE_ENSURE(context, raw_exp_lut != nullptr); | ||||||
|  |     op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut); | ||||||
|  |     void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer( | ||||||
|  |         context, sizeof(int16_t) * kInt16LUTArraySize); | ||||||
|  |     TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr); | ||||||
|  |     op_data->one_over_one_plus_x_lut = | ||||||
|  |         reinterpret_cast<int16_t*>(one_over_one_plus_x_lut); | ||||||
|  |   } | ||||||
|  | 
 | ||||||
|  |   if (output->type == kTfLiteInt16) { | ||||||
|  |     TF_LITE_ENSURE(context, input->type == kTfLiteInt8 || | ||||||
|  |                                 input->type == kTfLiteUInt8 || | ||||||
|  |                                 input->type == kTfLiteInt16); | ||||||
|  |   } else { | ||||||
|  |     TF_LITE_ENSURE_EQ(context, input->type, output->type); | ||||||
|  |   } | ||||||
|  | 
 | ||||||
|  |   // Populate LUT if required
 | ||||||
|  |   if (input->type == kTfLiteInt16) { | ||||||
|  |     TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); | ||||||
|  |     // exp LUT only used on negative values
 | ||||||
|  |     // we consider exp(-10.0) is insignificant to accumulation
 | ||||||
|  |     gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f, | ||||||
|  |             op_data->exp_lut, kInt16LUTArraySize); | ||||||
|  |     gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f, | ||||||
|  |             op_data->one_over_one_plus_x_lut, kInt16LUTArraySize); | ||||||
|  |     op_data->zero_point = output->params.zero_point; | ||||||
|  |     op_data->scale = output->params.scale; | ||||||
|  |   } | ||||||
|  | 
 | ||||||
|  |   auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data); | ||||||
|  |   return CalculateSoftmaxParams(context, input, output, params, op_data); | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | }  // namespace tflite
 | ||||||
| @ -143,12 +143,13 @@ TfLiteStatus CalculateSoftmaxOpData(TfLiteContext* context, | |||||||
|   return kTfLiteOk; |   return kTfLiteOk; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) { | void* SoftmaxInitXtensa(TfLiteContext* context, const char* buffer, | ||||||
|  |                         size_t length) { | ||||||
|   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); | ||||||
|   return context->AllocatePersistentBuffer(context, sizeof(OpData)); |   return context->AllocatePersistentBuffer(context, sizeof(OpData)); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { | TfLiteStatus SoftmaxPrepareXtensa(TfLiteContext* context, TfLiteNode* node) { | ||||||
|   auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data); |   auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data); | ||||||
| 
 | 
 | ||||||
|   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); | ||||||
| @ -195,9 +196,9 @@ TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { | |||||||
| }  // namespace
 | }  // namespace
 | ||||||
| 
 | 
 | ||||||
| TfLiteRegistration Register_SOFTMAX() { | TfLiteRegistration Register_SOFTMAX() { | ||||||
|   return {/*init=*/SoftmaxInit, |   return {/*init=*/SoftmaxInitXtensa, | ||||||
|           /*free=*/nullptr, |           /*free=*/nullptr, | ||||||
|           /*prepare=*/SoftmaxPrepare, |           /*prepare=*/SoftmaxPrepareXtensa, | ||||||
|           /*invoke=*/SoftmaxEval, |           /*invoke=*/SoftmaxEval, | ||||||
|           /*profiling_string=*/nullptr, |           /*profiling_string=*/nullptr, | ||||||
|           /*builtin_code=*/0, |           /*builtin_code=*/0, | ||||||
|  | |||||||
| @ -340,6 +340,7 @@ tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc \ | |||||||
| tensorflow/lite/micro/kernels/round.cc \ | tensorflow/lite/micro/kernels/round.cc \ | ||||||
| tensorflow/lite/micro/kernels/shape.cc \ | tensorflow/lite/micro/kernels/shape.cc \ | ||||||
| tensorflow/lite/micro/kernels/softmax.cc \ | tensorflow/lite/micro/kernels/softmax.cc \ | ||||||
|  | tensorflow/lite/micro/kernels/softmax_common.cc \ | ||||||
| tensorflow/lite/micro/kernels/split.cc \ | tensorflow/lite/micro/kernels/split.cc \ | ||||||
| tensorflow/lite/micro/kernels/split_v.cc \ | tensorflow/lite/micro/kernels/split_v.cc \ | ||||||
| tensorflow/lite/micro/kernels/strided_slice.cc \ | tensorflow/lite/micro/kernels/strided_slice.cc \ | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user