Merge pull request #46709 from advaitjain:softmax-refactor

PiperOrigin-RevId: 353952307
Change-Id: Iefcc2d4f8d28693a25aafd4c5ce3a35592a671ce
This commit is contained in:
TensorFlower Gardener 2021-01-26 14:39:45 -08:00
commit a4c269747a
7 changed files with 199 additions and 260 deletions

View File

@ -132,6 +132,7 @@ cc_library(
"resize_nearest_neighbor.cc",
"round.cc",
"shape.cc",
"softmax_common.cc",
"split.cc",
"split_v.cc",
"strided_slice.cc",
@ -159,6 +160,7 @@ cc_library(
hdrs = [
"micro_ops.h",
"quantize.h",
"softmax.h",
"svdf.h",
],
copts = micro_copts(),

View File

@ -1,4 +1,4 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -13,12 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
#include "tensorflow/lite/micro/kernels/softmax.h"
#include "CMSIS/NN/Include/arm_nnfunctions.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
@ -27,131 +28,6 @@ limitations under the License.
namespace tflite {
namespace {
// Softmax parameter data that persists in user_data
static constexpr int kInt16LUTArraySize = 513;
TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
const TfLiteTensor* input,
TfLiteTensor* output,
const TfLiteSoftmaxParams* params,
SoftmaxParams* op_data) {
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 ||
input->type == kTfLiteInt16) {
if (input->type == kTfLiteUInt8) {
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
} else if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768,
(0.001f * 1.f / 32768));
} else { // input->type == kTfLiteInt8
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536,
(0.001f * 1.f / 65536));
} else { // output->type == kTfLiteint8
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128);
TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
}
}
static const int kScaledDiffIntegerBits = 5;
// Calculate input_multiplier and input_left_shift
if (input->type == kTfLiteInt16) {
int input_left_shift;
double input_scale_beta_rescale =
static_cast<double>(input->params.scale) *
static_cast<double>(params->beta) /
(10.0 / 65535.0); // scale the input_diff such that [-65535, 0]
// correspond to [-10.0, 0.0]
QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier,
&input_left_shift);
op_data->input_left_shift = input_left_shift;
} else {
int input_left_shift;
tflite::PreprocessSoftmaxScaling(
static_cast<double>(params->beta),
static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
&op_data->input_multiplier, &input_left_shift);
op_data->input_left_shift = input_left_shift;
op_data->diff_min =
-1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
op_data->input_left_shift);
}
} else {
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
op_data->beta = static_cast<double>(params->beta);
}
return kTfLiteOk;
}
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams));
}
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE(context, node->user_data != nullptr);
SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data);
// Only allocate LUTs for KTfLiteInt16 data type
if (input->type == kTfLiteInt16) {
void* raw_exp_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut);
void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
op_data->one_over_one_plus_x_lut =
reinterpret_cast<int16_t*>(one_over_one_plus_x_lut);
}
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE(context, input->type == kTfLiteInt8 ||
input->type == kTfLiteUInt8 ||
input->type == kTfLiteInt16);
} else {
TF_LITE_ENSURE_EQ(context, input->type, output->type);
}
// Populate LUT if required
if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
// exp LUT only used on negative values
// we consider exp(-10.0) is insignificant to accumulation
gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f,
op_data->exp_lut, kInt16LUTArraySize);
gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f,
op_data->one_over_one_plus_x_lut, kInt16LUTArraySize);
op_data->zero_point = output->params.zero_point;
op_data->scale = output->params.scale;
}
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
return CalculateSoftmaxParams(context, input, output, params, op_data);
}
// Takes a tensor and performs softmax along the last dimension.
void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
const SoftmaxParams& op_data) {
tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
const SoftmaxParams& op_data) {
if (input->type == kTfLiteUInt8) {
@ -200,7 +76,11 @@ TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
switch (input->type) {
case kTfLiteFloat32: {
SoftmaxFloat(input, output, data);
tflite::reference_ops::Softmax(
data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
case kTfLiteInt8:

View File

@ -1,4 +1,4 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -13,12 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
#include "tensorflow/lite/micro/kernels/softmax.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
@ -27,77 +28,6 @@ limitations under the License.
namespace tflite {
namespace {
// Softmax parameter data that persists in user_data
static constexpr int kInt16LUTArraySize = 513;
TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
const TfLiteTensor* input,
TfLiteTensor* output,
const TfLiteSoftmaxParams* params,
SoftmaxParams* op_data) {
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 ||
input->type == kTfLiteInt16) {
if (input->type == kTfLiteUInt8) {
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
} else if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768,
(0.001f * 1.f / 32768));
} else { // input->type == kTfLiteInt8
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536,
(0.001f * 1.f / 65536));
} else { // output->type == kTfLiteint8
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128);
TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
}
}
static const int kScaledDiffIntegerBits = 5;
// Calculate input_multiplier and input_left_shift
if (input->type == kTfLiteInt16) {
int input_left_shift;
double input_scale_beta_rescale =
static_cast<double>(input->params.scale) *
static_cast<double>(params->beta) /
(10.0 / 65535.0); // scale the input_diff such that [-65535, 0]
// correspond to [-10.0, 0.0]
QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier,
&input_left_shift);
op_data->input_left_shift = input_left_shift;
} else {
int input_left_shift;
tflite::PreprocessSoftmaxScaling(
static_cast<double>(params->beta),
static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
&op_data->input_multiplier, &input_left_shift);
op_data->input_left_shift = input_left_shift;
op_data->diff_min =
-1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
op_data->input_left_shift);
}
} else {
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
op_data->beta = static_cast<double>(params->beta);
}
return kTfLiteOk;
}
// Takes a tensor and performs softmax along the last dimension.
void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
const SoftmaxParams& op_data) {
tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
const SoftmaxParams& op_data) {
if (input->type == kTfLiteUInt8) {
@ -129,60 +59,6 @@ void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
}
}
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams));
}
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE(context, node->user_data != nullptr);
SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data);
// Only allocate LUTs for KTfLiteInt16 data type
if (input->type == kTfLiteInt16) {
void* raw_exp_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut);
void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
op_data->one_over_one_plus_x_lut =
reinterpret_cast<int16_t*>(one_over_one_plus_x_lut);
}
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE(context, input->type == kTfLiteInt8 ||
input->type == kTfLiteUInt8 ||
input->type == kTfLiteInt16);
} else {
TF_LITE_ENSURE_EQ(context, input->type, output->type);
}
// Populate LUT if required
if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
// exp LUT only used on negative values
// we consider exp(-10.0) is insignificant to accumulation
gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f,
op_data->exp_lut, kInt16LUTArraySize);
gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f,
op_data->one_over_one_plus_x_lut, kInt16LUTArraySize);
op_data->zero_point = output->params.zero_point;
op_data->scale = output->params.scale;
}
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
return CalculateSoftmaxParams(context, input, output, params, op_data);
}
TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
@ -192,7 +68,11 @@ TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
switch (input->type) {
case kTfLiteFloat32: {
SoftmaxFloat(input, output, op_data);
tflite::reference_ops::Softmax(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
case kTfLiteInt8:

View File

@ -0,0 +1,30 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_SOFTMAX_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_SOFTMAX_H_
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length);
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node);
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_SOFTMAX_H_

View File

@ -0,0 +1,145 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/softmax.h"
namespace tflite {
namespace {
// Softmax parameter data that persists in user_data
const int kInt16LUTArraySize = 513;
TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
const TfLiteTensor* input,
TfLiteTensor* output,
const TfLiteSoftmaxParams* params,
SoftmaxParams* op_data) {
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 ||
input->type == kTfLiteInt16) {
if (input->type == kTfLiteUInt8) {
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
} else if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768,
(0.001f * 1.f / 32768));
} else { // input->type == kTfLiteInt8
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536,
(0.001f * 1.f / 65536));
} else { // output->type == kTfLiteint8
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128);
TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
}
}
static const int kScaledDiffIntegerBits = 5;
// Calculate input_multiplier and input_left_shift
if (input->type == kTfLiteInt16) {
int input_left_shift;
double input_scale_beta_rescale =
static_cast<double>(input->params.scale) *
static_cast<double>(params->beta) /
(10.0 / 65535.0); // scale the input_diff such that [-65535, 0]
// correspond to [-10.0, 0.0]
QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier,
&input_left_shift);
op_data->input_left_shift = input_left_shift;
} else {
int input_left_shift;
tflite::PreprocessSoftmaxScaling(
static_cast<double>(params->beta),
static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
&op_data->input_multiplier, &input_left_shift);
op_data->input_left_shift = input_left_shift;
op_data->diff_min =
-1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
op_data->input_left_shift);
}
} else {
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
op_data->beta = static_cast<double>(params->beta);
}
return kTfLiteOk;
}
} // namespace
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams));
}
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE(context, node->user_data != nullptr);
SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data);
// Only allocate LUTs for KTfLiteInt16 data type
if (input->type == kTfLiteInt16) {
void* raw_exp_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut);
void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
op_data->one_over_one_plus_x_lut =
reinterpret_cast<int16_t*>(one_over_one_plus_x_lut);
}
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE(context, input->type == kTfLiteInt8 ||
input->type == kTfLiteUInt8 ||
input->type == kTfLiteInt16);
} else {
TF_LITE_ENSURE_EQ(context, input->type, output->type);
}
// Populate LUT if required
if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
// exp LUT only used on negative values
// we consider exp(-10.0) is insignificant to accumulation
gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f,
op_data->exp_lut, kInt16LUTArraySize);
gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f,
op_data->one_over_one_plus_x_lut, kInt16LUTArraySize);
op_data->zero_point = output->params.zero_point;
op_data->scale = output->params.scale;
}
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
return CalculateSoftmaxParams(context, input, output, params, op_data);
}
} // namespace tflite

View File

@ -143,12 +143,13 @@ TfLiteStatus CalculateSoftmaxOpData(TfLiteContext* context,
return kTfLiteOk;
}
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
void* SoftmaxInitXtensa(TfLiteContext* context, const char* buffer,
size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
TfLiteStatus SoftmaxPrepareXtensa(TfLiteContext* context, TfLiteNode* node) {
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
@ -195,9 +196,9 @@ TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_SOFTMAX() {
return {/*init=*/SoftmaxInit,
return {/*init=*/SoftmaxInitXtensa,
/*free=*/nullptr,
/*prepare=*/SoftmaxPrepare,
/*prepare=*/SoftmaxPrepareXtensa,
/*invoke=*/SoftmaxEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,

View File

@ -340,6 +340,7 @@ tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc \
tensorflow/lite/micro/kernels/round.cc \
tensorflow/lite/micro/kernels/shape.cc \
tensorflow/lite/micro/kernels/softmax.cc \
tensorflow/lite/micro/kernels/softmax_common.cc \
tensorflow/lite/micro/kernels/split.cc \
tensorflow/lite/micro/kernels/split_v.cc \
tensorflow/lite/micro/kernels/strided_slice.cc \