Export the bfloat16 classes and functions from C++ to Python with pybind11 instead of swig. This is part of a larger effort to deprecate swig and eventually with modularization break pywrap_tensorflow into smaller components. It will also make exporting C++ ops to Python significantly easier. XLA is using the pybind11 macros already. Please refer to https://github.com/tensorflow/community/blob/master/rfcs/20190208-pybind11.md for more information.

PiperOrigin-RevId: 283439638
Change-Id: I8ca8e5e4835995f78b8b1d78036a98de444508d3
This commit is contained in:
Amit Patankar 2019-12-02 16:12:40 -08:00 committed by TensorFlower Gardener
parent 71681bd691
commit a46fa0b405
7 changed files with 32 additions and 26 deletions

View File

@ -400,6 +400,17 @@ cc_library(
],
)
tf_python_pybind_extension(
name = "_pywrap_bfloat16",
srcs = ["lib/core/bfloat16_wrapper.cc"],
hdrs = ["lib/core/bfloat16.h"],
module_name = "_pywrap_bfloat16",
deps = [
"//third_party/python_runtime:headers",
"@pybind11",
],
)
cc_library(
name = "ndarray_tensor_bridge",
srcs = ["lib/core/ndarray_tensor_bridge.cc"],
@ -1158,6 +1169,7 @@ py_library(
srcs_version = "PY2AND3",
deps = [
":_dtypes",
":_pywrap_bfloat16",
":pywrap_tensorflow",
"//tensorflow/core:protos_all_py",
],
@ -5442,7 +5454,6 @@ tf_py_wrap_cc(
"grappler/cost_analyzer.i",
"grappler/item.i",
"grappler/tf_optimizer.i",
"lib/core/bfloat16.i",
"lib/core/strings.i",
"lib/io/file_io.i",
"lib/io/py_record_reader.i",
@ -5528,6 +5539,7 @@ WIN_LIB_FILES_FOR_EXPORTED_SYMBOLS = [
":numpy_lib", # checkpoint_reader
":safe_ptr", # checkpoint_reader
":python_op_gen", # python_op_gen
":bfloat16_lib", # bfloat16
"//tensorflow/core/util/tensor_bundle", # checkpoint_reader
]

View File

@ -21,14 +21,15 @@ import numpy as np
from six.moves import builtins
from tensorflow.core.framework import types_pb2
# pywrap_tensorflow must be imported prior to _dtypes for the MacOS linker
# to resolve the protobufs properly.
# pylint: disable=unused-import,g-bad-import-order
from tensorflow.python import pywrap_tensorflow
# We need to import pywrap_tensorflow prior to the bfloat wrapper to avoid
# protobuf errors where a file is defined twice on MacOS.
# pylint: disable=invalid-import-order,g-bad-import-order
from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
from tensorflow.python import _pywrap_bfloat16
from tensorflow.python import _dtypes
from tensorflow.python.util.tf_export import tf_export
_np_bfloat16 = pywrap_tensorflow.TF_bfloat16_type()
_np_bfloat16 = _pywrap_bfloat16.TF_bfloat16_type()
# pylint: disable=slots-on-old-class

View File

@ -532,7 +532,9 @@ struct Bfloat16GeFunctor {
// Initializes the module.
bool Initialize() {
// It's critical to import umath to avoid crash in open source build.
// It's critical to ImportNumpy and import umath
// to avoid crash in open source build.
ImportNumpy();
import_umath1(false);
Safe_PyObjectPtr numpy_str = make_safe(MakePyString("numpy"));

View File

@ -24,12 +24,12 @@ import math
import numpy as np
# pylint: disable=unused-import,g-bad-import-order
from tensorflow.python import pywrap_tensorflow
from tensorflow.python import _pywrap_bfloat16
from tensorflow.python.framework import dtypes
from tensorflow.python.platform import test
bfloat16 = pywrap_tensorflow.TF_bfloat16_type()
bfloat16 = _pywrap_bfloat16.TF_bfloat16_type()
class Bfloat16Test(test.TestCase):

View File

@ -1,4 +1,4 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -13,18 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
%{
#include "include/pybind11/pybind11.h"
#include "tensorflow/python/lib/core/bfloat16.h"
%}
%init %{
tensorflow::RegisterNumpyBfloat16();
%}
PYBIND11_MODULE(_pywrap_bfloat16, m) {
tensorflow::RegisterNumpyBfloat16();
%{
PyObject* TF_bfloat16_type() {
return tensorflow::Bfloat16PyType();
m.def("TF_bfloat16_type",
[] { return pybind11::handle(tensorflow::Bfloat16PyType()); });
}
%}
PyObject* TF_bfloat16_type();

View File

@ -21,8 +21,6 @@ limitations under the License.
%include "tensorflow/python/client/tf_session.i"
%include "tensorflow/python/lib/core/bfloat16.i"
%include "tensorflow/python/lib/io/file_io.i"
%include "tensorflow/python/lib/io/py_record_reader.i"

View File

@ -18,7 +18,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
@ -131,7 +130,6 @@ class MovingAveragesTest(test.TestCase):
@test_util.deprecated_graph_mode_only
def testWeightedMovingAverageBfloat16(self):
bfloat16 = pywrap_tensorflow.TF_bfloat16_type()
with self.cached_session() as sess:
decay = 0.5
weight = array_ops.placeholder(dtypes.bfloat16, [])
@ -154,7 +152,8 @@ class MovingAveragesTest(test.TestCase):
wma_array = sess.run(wma, feed_dict={val: val_2, weight: weight_2})
numerator_2 = numerator_1 * decay + val_2 * weight_2 * (1.0 - decay)
denominator_2 = denominator_1 * decay + weight_2 * (1.0 - decay)
self.assertAllClose(bfloat16(numerator_2 / denominator_2), wma_array)
self.assertAllClose(
dtypes._np_bfloat16(numerator_2 / denominator_2), wma_array)
def _Repeat(value, dim):