Add a nested tf.function with control flow test.

PiperOrigin-RevId: 310589571
Change-Id: Icb71cd7f50d77fe4b67ba21bedf415cdc8ff24bd
This commit is contained in:
Ruoxin Sang 2020-05-08 11:02:28 -07:00 committed by TensorFlower Gardener
parent 546319f28a
commit a37a3569f4

View File

@ -378,6 +378,46 @@ class KerasModelsTest(test.TestCase, parameterized.TestCase):
for model_v, model2_v in zip(model.variables, model2.variables):
self.assertAllClose(model_v.numpy(), model2_v.numpy())
@combinations.generate(
combinations.combine(
distribution=strategy_combinations.all_strategies, mode=["eager"]))
def test_nested_tf_functions_with_control_flow(self, distribution):
inputs = np.random.random((10, 3)).astype(np.float32)
targets = np.ones((10, 4), dtype=np.float32)
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)).repeat()
dataset = dataset.batch(10, drop_remainder=True)
input_iterator = iter(distribution.experimental_distribute_dataset(dataset))
def get_model():
x = keras.layers.Input(shape=(3,), name="input")
y = keras.layers.Dense(4, name="dense")(x)
model = keras.Model(x, y)
return model
with distribution.scope():
model = get_model()
optimizer = keras.optimizer_v2.gradient_descent.SGD(0.1, momentum=0.01)
@def_function.function
def train_step(iterator):
def step_fn(inputs):
images, targets = inputs
with backprop.GradientTape() as tape:
outputs = model(images)
loss = math_ops.reduce_sum(outputs - targets)
grads = tape.gradient(loss, model.variables)
optimizer.apply_gradients(zip(grads, model.variables))
distribution.run(step_fn, args=(next(iterator),))
@def_function.function
def train_steps(iterator):
for _ in math_ops.range(10):
train_step(iterator)
train_steps(input_iterator)
@combinations.generate(
combinations.combine(
distribution=strategy_combinations.all_strategies,