Add a nested tf.function with control flow test.
PiperOrigin-RevId: 310589571 Change-Id: Icb71cd7f50d77fe4b67ba21bedf415cdc8ff24bd
This commit is contained in:
parent
546319f28a
commit
a37a3569f4
@ -378,6 +378,46 @@ class KerasModelsTest(test.TestCase, parameterized.TestCase):
|
|||||||
for model_v, model2_v in zip(model.variables, model2.variables):
|
for model_v, model2_v in zip(model.variables, model2.variables):
|
||||||
self.assertAllClose(model_v.numpy(), model2_v.numpy())
|
self.assertAllClose(model_v.numpy(), model2_v.numpy())
|
||||||
|
|
||||||
|
@combinations.generate(
|
||||||
|
combinations.combine(
|
||||||
|
distribution=strategy_combinations.all_strategies, mode=["eager"]))
|
||||||
|
def test_nested_tf_functions_with_control_flow(self, distribution):
|
||||||
|
inputs = np.random.random((10, 3)).astype(np.float32)
|
||||||
|
targets = np.ones((10, 4), dtype=np.float32)
|
||||||
|
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)).repeat()
|
||||||
|
dataset = dataset.batch(10, drop_remainder=True)
|
||||||
|
input_iterator = iter(distribution.experimental_distribute_dataset(dataset))
|
||||||
|
|
||||||
|
def get_model():
|
||||||
|
x = keras.layers.Input(shape=(3,), name="input")
|
||||||
|
y = keras.layers.Dense(4, name="dense")(x)
|
||||||
|
model = keras.Model(x, y)
|
||||||
|
return model
|
||||||
|
|
||||||
|
with distribution.scope():
|
||||||
|
model = get_model()
|
||||||
|
optimizer = keras.optimizer_v2.gradient_descent.SGD(0.1, momentum=0.01)
|
||||||
|
|
||||||
|
@def_function.function
|
||||||
|
def train_step(iterator):
|
||||||
|
|
||||||
|
def step_fn(inputs):
|
||||||
|
images, targets = inputs
|
||||||
|
with backprop.GradientTape() as tape:
|
||||||
|
outputs = model(images)
|
||||||
|
loss = math_ops.reduce_sum(outputs - targets)
|
||||||
|
grads = tape.gradient(loss, model.variables)
|
||||||
|
optimizer.apply_gradients(zip(grads, model.variables))
|
||||||
|
|
||||||
|
distribution.run(step_fn, args=(next(iterator),))
|
||||||
|
|
||||||
|
@def_function.function
|
||||||
|
def train_steps(iterator):
|
||||||
|
for _ in math_ops.range(10):
|
||||||
|
train_step(iterator)
|
||||||
|
|
||||||
|
train_steps(input_iterator)
|
||||||
|
|
||||||
@combinations.generate(
|
@combinations.generate(
|
||||||
combinations.combine(
|
combinations.combine(
|
||||||
distribution=strategy_combinations.all_strategies,
|
distribution=strategy_combinations.all_strategies,
|
||||||
|
Loading…
Reference in New Issue
Block a user