|
|
|
@ -0,0 +1,915 @@
|
|
|
|
|
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
|
limitations under the License.
|
|
|
|
|
==============================================================================*/
|
|
|
|
|
|
|
|
|
|
#include "tensorflow/core/kernels/data/dataset_test_base.h"
|
|
|
|
|
|
|
|
|
|
namespace tensorflow {
|
|
|
|
|
namespace data {
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
constexpr char kShuffleNodeName[] = "shuffle_dataset";
|
|
|
|
|
constexpr char kShuffleOpName[] = "ShuffleDataset";
|
|
|
|
|
constexpr char kShuffleAndRepeatNodeName[] = "shuffle_and_repeat_dataset";
|
|
|
|
|
constexpr char kShuffleAndRepeatOpName[] = "ShuffleAndRepeatDataset";
|
|
|
|
|
|
|
|
|
|
class ShuffleDatasetOpTest : public DatasetOpsTestBase {
|
|
|
|
|
protected:
|
|
|
|
|
// Creates a new `ShuffleDataset`/`ShuffleAndRepeatDataset` op kernel
|
|
|
|
|
Status CreateDatasetOpKernel(
|
|
|
|
|
int64 count, bool reshuffle_each_iteration,
|
|
|
|
|
const DataTypeVector& output_types,
|
|
|
|
|
const std::vector<PartialTensorShape>& output_shapes,
|
|
|
|
|
std::unique_ptr<OpKernel>* shuffle_dataset_kernel) {
|
|
|
|
|
NodeDef node_def;
|
|
|
|
|
if (count == 1) {
|
|
|
|
|
node_def = test::function::NDef(
|
|
|
|
|
kShuffleNodeName, kShuffleOpName,
|
|
|
|
|
{"input_dataset", "buffer_size", "seed", "seed2"},
|
|
|
|
|
{{"reshuffle_each_iteration", reshuffle_each_iteration},
|
|
|
|
|
{"output_types", output_types},
|
|
|
|
|
{"output_shapes", output_shapes}});
|
|
|
|
|
} else {
|
|
|
|
|
node_def = test::function::NDef(
|
|
|
|
|
kShuffleAndRepeatNodeName, kShuffleAndRepeatOpName,
|
|
|
|
|
{"input_dataset", "buffer_size", "seed", "seed2", "count"},
|
|
|
|
|
{{"output_types", output_types}, {"output_shapes", output_shapes}});
|
|
|
|
|
}
|
|
|
|
|
TF_RETURN_IF_ERROR(CreateOpKernel(node_def, shuffle_dataset_kernel));
|
|
|
|
|
return Status::OK();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Creates a new `ShuffleDataset`/`ShuffleAndRepeatDataset` op kernel context.
|
|
|
|
|
Status CreateDatasetContext(OpKernel* const op_kernel,
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4>* const inputs,
|
|
|
|
|
std::unique_ptr<OpKernelContext>* context) {
|
|
|
|
|
TF_RETURN_IF_ERROR(CheckOpKernelInput(*op_kernel, *inputs));
|
|
|
|
|
TF_RETURN_IF_ERROR(CreateOpKernelContext(op_kernel, inputs, context));
|
|
|
|
|
return Status::OK();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct RangeDatasetParam {
|
|
|
|
|
int64 start;
|
|
|
|
|
int64 end;
|
|
|
|
|
int64 step;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct TestCase {
|
|
|
|
|
RangeDatasetParam range_data_param;
|
|
|
|
|
Tensor buffer_size;
|
|
|
|
|
Tensor seed;
|
|
|
|
|
Tensor seed2;
|
|
|
|
|
Tensor count;
|
|
|
|
|
bool reshuffle_each_iteration;
|
|
|
|
|
std::vector<Tensor> expected_shuffle_outputs;
|
|
|
|
|
std::vector<Tensor> expected_reshuffle_outputs;
|
|
|
|
|
DataTypeVector expected_output_dtypes;
|
|
|
|
|
std::vector<PartialTensorShape> expected_output_shapes;
|
|
|
|
|
int64 expected_cardinality;
|
|
|
|
|
std::vector<int> breakpoints;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
std::vector<Tensor> ConvertToTensorVec(std::vector<T> values) {
|
|
|
|
|
std::vector<Tensor> tensors;
|
|
|
|
|
tensors.reserve(values.size());
|
|
|
|
|
for (auto& value : values) {
|
|
|
|
|
tensors.emplace_back(
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<T>(TensorShape({}), {value}));
|
|
|
|
|
}
|
|
|
|
|
return tensors;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Test case 1: test shuffle_dataset with reshuffle_each_iteration = false.
|
|
|
|
|
TestCase TestCase1() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 10, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {3}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*reshuffle_each_iteration*/ false,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({2, 3, 0, 5, 6, 4, 7, 8, 9, 1}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({2, 3, 0, 5, 6, 4, 7, 8, 9, 1}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 10,
|
|
|
|
|
/*breakpoints*/ {0, 1, 9}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Test case 2: test shuffle_dataset with reshuffle_each_iteration = true.
|
|
|
|
|
TestCase TestCase2() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 10, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {10}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*reshuffle_each_iteration*/ true,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({2, 6, 1, 3, 9, 5, 0, 8, 7, 4}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({1, 6, 0, 5, 2, 7, 4, 3, 9, 8}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 10,
|
|
|
|
|
/*breakpoints*/ {0, 1, 9}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Test case 3: similar with the test case 2 but a smaller buffer size than
|
|
|
|
|
// the input dataset.
|
|
|
|
|
TestCase TestCase3() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 10, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*reshuffle_each_iteration*/ true,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({0, 2, 1, 3, 5, 6, 4, 7, 8, 9}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({1, 0, 2, 3, 4, 5, 6, 7, 9, 8}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 10,
|
|
|
|
|
/*breakpoints*/ {0, 1, 9}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Test case 4: similar with the test case 2 but has different seeds.
|
|
|
|
|
TestCase TestCase4() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 10, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {10}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*reshuffle_each_iteration*/ true,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({3, 0, 8, 1, 5, 4, 7, 2, 6, 9}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({4, 6, 9, 0, 1, 8, 2, 7, 3, 5}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 10,
|
|
|
|
|
/*breakpoints*/ {0, 1, 9}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Test case 5: test shuffle_dataset with buffer_size = 1 &
|
|
|
|
|
// reshuffle_each_iteration = true.
|
|
|
|
|
TestCase TestCase5() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 10, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*reshuffle_each_iteration*/ true,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 10,
|
|
|
|
|
/*breakpoints*/ {0, 1, 9}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Test case 6: test shuffle_dataset with an empty input dataset.
|
|
|
|
|
TestCase TestCase6() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 0, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {10}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*reshuffle_each_iteration*/ true,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 0,
|
|
|
|
|
/*breakpoints*/ {0, 1, 9}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Test case 7: test shuffle_and_repeat_dataset with buffer_size = 10 &
|
|
|
|
|
// count = 2.
|
|
|
|
|
TestCase TestCase7() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 10, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {10}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*reshuffle_each_iteration*/ false,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>(
|
|
|
|
|
{9, 0, 8, 6, 1, 3, 7, 2, 4, 5, 4, 3, 0, 5, 8, 2, 6, 9, 7, 1}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>(
|
|
|
|
|
{9, 0, 8, 6, 1, 3, 7, 2, 4, 5, 4, 3, 0, 5, 8, 2, 6, 9, 7, 1}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 20,
|
|
|
|
|
/*breakpoints*/ {0, 5, 22}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Test case 8: test shuffle_and_repeat_dataset with buffer_size = 10 &
|
|
|
|
|
// count = -1
|
|
|
|
|
TestCase TestCase8() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 3, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {10}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {-1}),
|
|
|
|
|
/*reshuffle_each_iteration*/ false,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>(
|
|
|
|
|
{2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 1, 0}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>(
|
|
|
|
|
{2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 1, 0}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ kInfiniteCardinality,
|
|
|
|
|
/*breakpoints*/ {0, 5, 20}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TestCase InvalidBufferSizeTestCaseForShuffleDataset() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 10, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {-1}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*reshuffle_each_iteration*/ true,
|
|
|
|
|
/*expected_shuffle_outputs*/ ConvertToTensorVec<int64>({}),
|
|
|
|
|
/*expected_reshuffle_outputs*/ ConvertToTensorVec<int64>({}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 0,
|
|
|
|
|
/*breakpoints*/ {0, 1, 9}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TestCase InvalidBufferSizeTestCaseForShuffleAndRepeatDataset() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 10, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {-1}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*reshuffle_each_iteration*/ true,
|
|
|
|
|
/*expected_shuffle_outputs*/ ConvertToTensorVec<int64>({}),
|
|
|
|
|
/*expected_reshuffle_outputs*/ ConvertToTensorVec<int64>({}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 0,
|
|
|
|
|
/*breakpoints*/ {0, 1, 9}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TestCase InvalidCountTestCaseForShuffleAndRepeatDataset() {
|
|
|
|
|
return {
|
|
|
|
|
/*range_data_param*/ {0, 3, 1},
|
|
|
|
|
/*buffer_size*/
|
|
|
|
|
DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {10}),
|
|
|
|
|
/*seed*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {1}),
|
|
|
|
|
/*seed2*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {2}),
|
|
|
|
|
/*count*/ DatasetOpsTestBase::CreateTensor<int64>(TensorShape({}), {0}),
|
|
|
|
|
/*reshuffle_each_iteration*/ false,
|
|
|
|
|
/*expected_shuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({}),
|
|
|
|
|
/*expected_reshuffle_outputs*/
|
|
|
|
|
ConvertToTensorVec<int64>({}),
|
|
|
|
|
/*expected_output_dtypes*/ {DT_INT64},
|
|
|
|
|
/*expected_output_shapes*/ {PartialTensorShape({})},
|
|
|
|
|
/*expected_cardinality*/ 0,
|
|
|
|
|
/*breakpoints*/ {0, 5, 20}};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
class ParameterizedShuffleDatasetOpTest
|
|
|
|
|
: public ShuffleDatasetOpTest,
|
|
|
|
|
public ::testing::WithParamInterface<TestCase> {};
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, GetNext) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
|
|
|
|
TF_ASSERT_OK(CreateIteratorContext(dataset_context.get(), &iterator_ctx));
|
|
|
|
|
std::unique_ptr<IteratorBase> iterator;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
dataset->MakeIterator(iterator_ctx.get(), "Iterator", &iterator));
|
|
|
|
|
|
|
|
|
|
bool end_of_sequence = false;
|
|
|
|
|
std::vector<Tensor> shuffled_out_tensors;
|
|
|
|
|
while (!end_of_sequence) {
|
|
|
|
|
std::vector<Tensor> next;
|
|
|
|
|
TF_EXPECT_OK(
|
|
|
|
|
iterator->GetNext(iterator_ctx.get(), &next, &end_of_sequence));
|
|
|
|
|
shuffled_out_tensors.insert(shuffled_out_tensors.end(), next.begin(),
|
|
|
|
|
next.end());
|
|
|
|
|
// For the forever-repeat case, we test only a finite number of steps of
|
|
|
|
|
// the infinite sequence.
|
|
|
|
|
if (count_value == -1 && shuffled_out_tensors.size() ==
|
|
|
|
|
test_case.expected_shuffle_outputs.size()) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Reshuffle the dataset.
|
|
|
|
|
end_of_sequence = false;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
dataset->MakeIterator(iterator_ctx.get(), "Iterator", &iterator));
|
|
|
|
|
std::vector<Tensor> reshuffled_out_tensors;
|
|
|
|
|
while (!end_of_sequence) {
|
|
|
|
|
std::vector<Tensor> next;
|
|
|
|
|
TF_EXPECT_OK(
|
|
|
|
|
iterator->GetNext(iterator_ctx.get(), &next, &end_of_sequence));
|
|
|
|
|
reshuffled_out_tensors.insert(reshuffled_out_tensors.end(), next.begin(),
|
|
|
|
|
next.end());
|
|
|
|
|
// For the forever-repeat case, we test only a finite number of steps of
|
|
|
|
|
// the infinite sequence.
|
|
|
|
|
if (count_value == -1 && reshuffled_out_tensors.size() ==
|
|
|
|
|
test_case.expected_shuffle_outputs.size()) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TF_EXPECT_OK(ExpectEqual(shuffled_out_tensors,
|
|
|
|
|
test_case.expected_shuffle_outputs,
|
|
|
|
|
/*compare_order*/ true));
|
|
|
|
|
TF_EXPECT_OK(ExpectEqual(reshuffled_out_tensors,
|
|
|
|
|
test_case.expected_reshuffle_outputs,
|
|
|
|
|
/*compare_order*/ true));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, DatasetNodeName) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
if (count_value == 1) {
|
|
|
|
|
EXPECT_EQ(dataset->node_name(), kShuffleNodeName);
|
|
|
|
|
} else {
|
|
|
|
|
EXPECT_EQ(dataset->node_name(), kShuffleAndRepeatNodeName);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, DatasetTypeString) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
if (count_value == 1) {
|
|
|
|
|
EXPECT_EQ(dataset->type_string(), kShuffleOpName);
|
|
|
|
|
} else {
|
|
|
|
|
EXPECT_EQ(dataset->type_string(), kShuffleAndRepeatOpName);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, DatasetOutputDtypes) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
TF_EXPECT_OK(VerifyTypesMatch(dataset->output_dtypes(),
|
|
|
|
|
test_case.expected_output_dtypes));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, DatasetOutputShapes) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
TF_EXPECT_OK(VerifyShapesCompatible(dataset->output_shapes(),
|
|
|
|
|
test_case.expected_output_shapes));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, Cardinality) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
EXPECT_EQ(dataset->Cardinality(), test_case.expected_cardinality);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, DatasetSave) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<SerializationContext> serialization_context;
|
|
|
|
|
TF_ASSERT_OK(CreateSerializationContext(&serialization_context));
|
|
|
|
|
VariantTensorData data;
|
|
|
|
|
VariantTensorDataWriter writer(&data);
|
|
|
|
|
TF_ASSERT_OK(dataset->Save(serialization_context.get(), &writer));
|
|
|
|
|
TF_ASSERT_OK(writer.Flush());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, IteratorOutputDtypes) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
|
|
|
|
TF_ASSERT_OK(CreateIteratorContext(dataset_context.get(), &iterator_ctx));
|
|
|
|
|
std::unique_ptr<IteratorBase> iterator;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
dataset->MakeIterator(iterator_ctx.get(), "Iterator", &iterator));
|
|
|
|
|
|
|
|
|
|
TF_EXPECT_OK(VerifyTypesMatch(iterator->output_dtypes(),
|
|
|
|
|
test_case.expected_output_dtypes));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, IteratorOutputShapes) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
|
|
|
|
TF_ASSERT_OK(CreateIteratorContext(dataset_context.get(), &iterator_ctx));
|
|
|
|
|
std::unique_ptr<IteratorBase> iterator;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
dataset->MakeIterator(iterator_ctx.get(), "Iterator", &iterator));
|
|
|
|
|
|
|
|
|
|
TF_EXPECT_OK(VerifyShapesCompatible(iterator->output_shapes(),
|
|
|
|
|
test_case.expected_output_shapes));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, IteratorOutputPrefix) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
|
|
|
|
TF_ASSERT_OK(CreateIteratorContext(dataset_context.get(), &iterator_ctx));
|
|
|
|
|
std::unique_ptr<IteratorBase> iterator;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
dataset->MakeIterator(iterator_ctx.get(), "Iterator", &iterator));
|
|
|
|
|
|
|
|
|
|
if (count_value == 1) {
|
|
|
|
|
EXPECT_EQ(iterator->prefix(), "Iterator::Shuffle");
|
|
|
|
|
} else {
|
|
|
|
|
EXPECT_EQ(iterator->prefix(), "Iterator::ShuffleAndRepeat");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_P(ParameterizedShuffleDatasetOpTest, Roundtrip) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
TestCase test_case = GetParam();
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetOpKernel(count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes,
|
|
|
|
|
test_case.expected_output_shapes, &dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* dataset;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDataset(dataset_kernel.get(), dataset_context.get(), &dataset));
|
|
|
|
|
core::ScopedUnref scoped_unref_dataset(dataset);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<IteratorContext> iterator_ctx;
|
|
|
|
|
TF_ASSERT_OK(CreateIteratorContext(dataset_context.get(), &iterator_ctx));
|
|
|
|
|
std::unique_ptr<IteratorBase> iterator;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
dataset->MakeIterator(iterator_ctx.get(), "Iterator", &iterator));
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<SerializationContext> serialization_ctx;
|
|
|
|
|
TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx));
|
|
|
|
|
|
|
|
|
|
bool end_of_sequence = false;
|
|
|
|
|
std::vector<Tensor> out_tensors;
|
|
|
|
|
int cur_iteration = 0;
|
|
|
|
|
const std::vector<int>& breakpoints = test_case.breakpoints;
|
|
|
|
|
for (int breakpoint : breakpoints) {
|
|
|
|
|
VariantTensorData data;
|
|
|
|
|
VariantTensorDataWriter writer(&data);
|
|
|
|
|
TF_EXPECT_OK(iterator->Save(serialization_ctx.get(), &writer));
|
|
|
|
|
TF_EXPECT_OK(writer.Flush());
|
|
|
|
|
VariantTensorDataReader reader(&data);
|
|
|
|
|
TF_EXPECT_OK(RestoreIterator(iterator_ctx.get(), &reader, "Iterator",
|
|
|
|
|
*dataset, &iterator));
|
|
|
|
|
|
|
|
|
|
while (cur_iteration <= breakpoint) {
|
|
|
|
|
std::vector<Tensor> next;
|
|
|
|
|
TF_EXPECT_OK(
|
|
|
|
|
iterator->GetNext(iterator_ctx.get(), &next, &end_of_sequence));
|
|
|
|
|
out_tensors.insert(out_tensors.end(), next.begin(), next.end());
|
|
|
|
|
cur_iteration++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TF_EXPECT_OK(ExpectEqual(out_tensors, test_case.expected_shuffle_outputs,
|
|
|
|
|
/*compare_order*/ true));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_SUITE_P(ShuffleDatasetOpTest,
|
|
|
|
|
ParameterizedShuffleDatasetOpTest,
|
|
|
|
|
::testing::ValuesIn(std::vector<TestCase>(
|
|
|
|
|
{TestCase1(), TestCase2(), TestCase3(),
|
|
|
|
|
TestCase4(), TestCase5(), TestCase6(),
|
|
|
|
|
TestCase7(), TestCase8()})));
|
|
|
|
|
|
|
|
|
|
TEST_F(ShuffleDatasetOpTest, InvalidArguments) {
|
|
|
|
|
int thread_num = 2, cpu_num = 2;
|
|
|
|
|
std::vector<TestCase> test_cases = {
|
|
|
|
|
InvalidBufferSizeTestCaseForShuffleDataset(),
|
|
|
|
|
InvalidBufferSizeTestCaseForShuffleAndRepeatDataset(),
|
|
|
|
|
InvalidCountTestCaseForShuffleAndRepeatDataset()};
|
|
|
|
|
TF_ASSERT_OK(InitThreadPool(thread_num));
|
|
|
|
|
TF_ASSERT_OK(InitFunctionLibraryRuntime({}, cpu_num));
|
|
|
|
|
|
|
|
|
|
for (const auto& test_case : test_cases) {
|
|
|
|
|
Tensor count = test_case.count;
|
|
|
|
|
int64 count_value = count.flat<int64>()(0);
|
|
|
|
|
std::unique_ptr<OpKernel> dataset_kernel;
|
|
|
|
|
TF_ASSERT_OK(CreateDatasetOpKernel(
|
|
|
|
|
count_value, test_case.reshuffle_each_iteration,
|
|
|
|
|
test_case.expected_output_dtypes, test_case.expected_output_shapes,
|
|
|
|
|
&dataset_kernel));
|
|
|
|
|
|
|
|
|
|
DatasetBase* range_dataset;
|
|
|
|
|
TF_ASSERT_OK(CreateRangeDataset<int64>(
|
|
|
|
|
test_case.range_data_param.start, test_case.range_data_param.end,
|
|
|
|
|
test_case.range_data_param.step, "range", &range_dataset));
|
|
|
|
|
Tensor range_dataset_tensor(DT_VARIANT, TensorShape({}));
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
StoreDatasetInVariantTensor(range_dataset, &range_dataset_tensor));
|
|
|
|
|
Tensor buffer_size = test_case.buffer_size;
|
|
|
|
|
Tensor seed = test_case.seed;
|
|
|
|
|
Tensor seed2 = test_case.seed2;
|
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs(
|
|
|
|
|
{&range_dataset_tensor, &buffer_size, &seed, &seed2});
|
|
|
|
|
if (count_value != 1) inputs.push_back(&count);
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<OpKernelContext> dataset_context;
|
|
|
|
|
TF_ASSERT_OK(
|
|
|
|
|
CreateDatasetContext(dataset_kernel.get(), &inputs, &dataset_context));
|
|
|
|
|
DatasetBase* shuffle_dataset;
|
|
|
|
|
EXPECT_EQ(CreateDataset(dataset_kernel.get(), dataset_context.get(),
|
|
|
|
|
&shuffle_dataset)
|
|
|
|
|
.code(),
|
|
|
|
|
tensorflow::error::INVALID_ARGUMENT);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
} // namespace data
|
|
|
|
|
} // namespace tensorflow
|