From a2009115dfa777243f277d8abb702aec42c4178a Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Thu, 26 May 2016 09:03:01 -0800 Subject: [PATCH] Update ops-related pbtxt files. Change: 123329408 --- .../core/ops/compat/ops_history.v0.pbtxt | 25 ++++++++++++ tensorflow/core/ops/ops.pbtxt | 38 +++++++++++++++++-- 2 files changed, 59 insertions(+), 4 deletions(-) diff --git a/tensorflow/core/ops/compat/ops_history.v0.pbtxt b/tensorflow/core/ops/compat/ops_history.v0.pbtxt index 1ab52b252aa..0a15d861c2c 100644 --- a/tensorflow/core/ops/compat/ops_history.v0.pbtxt +++ b/tensorflow/core/ops/compat/ops_history.v0.pbtxt @@ -3175,6 +3175,31 @@ op { } } } +op { + name: "BatchCholeskyGrad" + input_arg { + name: "l" + type_attr: "T" + } + input_arg { + name: "grad" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + } + } + } +} op { name: "BatchFFT" input_arg { diff --git a/tensorflow/core/ops/ops.pbtxt b/tensorflow/core/ops/ops.pbtxt index 57e4e716038..2c0c6f30d3c 100644 --- a/tensorflow/core/ops/ops.pbtxt +++ b/tensorflow/core/ops/ops.pbtxt @@ -1397,6 +1397,36 @@ op { summary: "Calculates the Cholesky decomposition of a batch of square matrices." description: "The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions\nform square matrices, with the same constraints as the single matrix Cholesky\ndecomposition above. The output is a tensor of the same shape as the input\ncontaining the Cholesky decompositions for all input submatrices `[..., :, :]`." } +op { + name: "BatchCholeskyGrad" + input_arg { + name: "l" + description: "Output of batch Cholesky algorithm l = batch_cholesky(A). Shape is `[..., M, M]`.\nAlgorithm depends only on lower triangular part of the innermost matrices of\nthis tensor." + type_attr: "T" + } + input_arg { + name: "grad" + description: "df/dl where f is some scalar function. Shape is `[..., M, M]\'.\nAlgorithm depends only on lower triangular part of the innermost matrices of\nthis tensor." + type_attr: "T" + } + output_arg { + name: "output" + description: "Symmetrized version of df/dA . Shape is `[..., M, M]\'" + type_attr: "T" + } + attr { + name: "T" + type: "type" + allowed_values { + list { + type: DT_FLOAT + type: DT_DOUBLE + } + } + } + summary: "Calculates the reverse mode backpropagated gradient of the Cholesky algorithm." + description: "For an explanation see \"Differentiation of the Cholesky algorithm\" by\nIain Murray http://arxiv.org/abs/1602.07527." +} op { name: "BatchFFT" input_arg { @@ -2482,17 +2512,17 @@ op { name: "CholeskyGrad" input_arg { name: "l" - description: "Output of Cholesky algorithm l = chol(A). Shape is `[M, M]`. Algorithm depends only on lower triangular part of this matrix." + description: "Output of Cholesky algorithm l = chol(A). Shape is `[M, M]`.\nAlgorithm depends only on lower triangular part of this matrix." type_attr: "T" } input_arg { name: "grad" - description: "df/dl where f is some scalar function. Shape is `[M, M]\'. Algorithm depends only on lower triangular part of this matrix." + description: "df/dl where f is some scalar function. Shape is `[M, M]\'.\nAlgorithm depends only on lower triangular part of this matrix." type_attr: "T" } output_arg { name: "output" - description: "Symmetrized version of df/dA . Shape is `[M, M]\'" + description: "Symmetrized version of df/dA . Shape is `[M, M]\'." type_attr: "T" } attr { @@ -2506,7 +2536,7 @@ op { } } summary: "Calculates the reverse mode backpropagated gradient of the Cholesky algorithm." - description: "For an explanation see \"Differentiation of the Cholesky algorithm\" by Iain Murray http://arxiv.org/abs/1602.07527." + description: "For an explanation see \"Differentiation of the Cholesky algorithm\" by\nIain Murray http://arxiv.org/abs/1602.07527." } op { name: "Complex"