diff --git a/tensorflow/lite/g3doc/models/image_classification/overview.md b/tensorflow/lite/g3doc/models/image_classification/overview.md index 40ebbba052e..9bb4493cfe6 100644 --- a/tensorflow/lite/g3doc/models/image_classification/overview.md +++ b/tensorflow/lite/g3doc/models/image_classification/overview.md @@ -328,5 +328,5 @@ images for each of the new labels you wish to train. Learn how to perform transfer learning in the Recognize -flowers with TensorFlow codelab, or with the [model customization toolkit] -(https://github.com/tensorflow/examples/tree/master/tensorflow_examples/lite/model_customization/demo/image_classification.ipynb). +flowers with TensorFlow codelab, or with the +[model maker toolkit](https://github.com/tensorflow/examples/tree/master/tensorflow_examples/lite/model_maker/demo/image_classification.ipynb). diff --git a/tensorflow/lite/g3doc/models/text_classification/overview.md b/tensorflow/lite/g3doc/models/text_classification/overview.md index 94960113d94..446d4625013 100644 --- a/tensorflow/lite/g3doc/models/text_classification/overview.md +++ b/tensorflow/lite/g3doc/models/text_classification/overview.md @@ -93,7 +93,7 @@ Performance benchmark numbers are generated with the tool ## Use your training dataset Follow this -[tutorial](https://github.com/tensorflow/examples/tree/master/tensorflow_examples/lite/model_customization/demo/text_classification.ipynb) +[tutorial](https://github.com/tensorflow/examples/tree/master/tensorflow_examples/lite/model_maker/demo/text_classification.ipynb) to apply the same technique used here to train a text classification model using your own datasets. With the right dataset, you can create a model for use cases such as document categorization or toxic comments detection.