fix pylint errors (Line too long)
This commit is contained in:
parent
8f48b4ae06
commit
9fc04fc531
tensorflow
examples/saved_model/integration_tests
python
data
feature_column
framework
ops
util
@ -87,7 +87,8 @@ class TextEmbeddingModel(tf.train.Checkpoint):
|
||||
|
||||
return tf.nn.safe_embedding_lookup_sparse(
|
||||
embedding_weights=self.embeddings,
|
||||
sparse_ids=tf.sparse.SparseTensor(token_ids, token_values, token_dense_shape),
|
||||
sparse_ids=tf.sparse.SparseTensor(token_ids, token_values,
|
||||
token_dense_shape),
|
||||
sparse_weights=None,
|
||||
combiner="sqrtn")
|
||||
|
||||
|
@ -121,9 +121,9 @@ def dense_to_sparse_batch(batch_size, row_shape):
|
||||
consecutive elements of this dataset to combine in a single batch.
|
||||
row_shape: A `tf.TensorShape` or `tf.int64` vector tensor-like object
|
||||
representing the equivalent dense shape of a row in the resulting
|
||||
`tf.sparse.SparseTensor`. Each element of this dataset must have the same rank as
|
||||
`row_shape`, and must have size less than or equal to `row_shape` in each
|
||||
dimension.
|
||||
`tf.sparse.SparseTensor`. Each element of this dataset must have the same
|
||||
rank as `row_shape`, and must have size less than or equal to
|
||||
`row_shape` in each dimension.
|
||||
|
||||
Returns:
|
||||
A `Dataset` transformation function, which can be passed to
|
||||
|
@ -2915,8 +2915,8 @@ class SparseTensorSliceDataset(DatasetSource):
|
||||
"""See `Dataset.from_sparse_tensor_slices()` for details."""
|
||||
if not isinstance(sparse_tensor, sparse_tensor_lib.SparseTensor):
|
||||
raise TypeError(
|
||||
"`sparse_tensor` must be a `tf.sparse.SparseTensor` object. Was {}.".format(
|
||||
sparse_tensor))
|
||||
"`sparse_tensor` must be a `tf.sparse.SparseTensor` object."
|
||||
"Was {}.".format(sparse_tensor))
|
||||
self._sparse_tensor = sparse_tensor
|
||||
|
||||
indices_shape = self._sparse_tensor.indices.get_shape()
|
||||
|
@ -65,8 +65,8 @@ def as_dense_types(types, classes):
|
||||
|
||||
Returns:
|
||||
a structure matching the nested structure of `types`, containing
|
||||
`dtypes.variant` at positions where `classes` contains `tf.sparse.SparseTensor` and
|
||||
matching contents of `types` otherwise
|
||||
`dtypes.variant` at positions where `classes` contains
|
||||
`tf.sparse.SparseTensor` and matching contents of `types` otherwise
|
||||
"""
|
||||
ret = nest.pack_sequence_as(types, [
|
||||
dtypes.variant if c is sparse_tensor.SparseTensor else ty
|
||||
@ -106,8 +106,8 @@ def get_classes(tensors):
|
||||
|
||||
Returns:
|
||||
a structure matching the nested structure of `tensors`, containing
|
||||
`tf.sparse.SparseTensor` at positions where `tensors` contains a sparse tensor and
|
||||
`tf.Tensor` otherwise
|
||||
`tf.sparse.SparseTensor` at positions where `tensors` contains a sparse
|
||||
tensor and `tf.Tensor` otherwise.
|
||||
"""
|
||||
return nest.pack_sequence_as(tensors, [
|
||||
sparse_tensor.SparseTensor
|
||||
|
@ -1969,7 +1969,8 @@ class _CategoricalColumn(_FeatureColumn):
|
||||
WARNING: Do not subclass this layer unless you know what you are doing:
|
||||
the API is subject to future changes.
|
||||
|
||||
A categorical feature typically handled with a `tf.sparse.SparseTensor` of IDs.
|
||||
A categorical feature typically handled with a `tf.sparse.SparseTensor` of
|
||||
IDs.
|
||||
"""
|
||||
|
||||
IdWeightPair = collections.namedtuple( # pylint: disable=invalid-name
|
||||
|
@ -2515,7 +2515,8 @@ def _create_dense_column_weighted_sum(column, transformation_cache,
|
||||
class CategoricalColumn(FeatureColumn):
|
||||
"""Represents a categorical feature.
|
||||
|
||||
A categorical feature typically handled with a `tf.sparse.SparseTensor` of IDs.
|
||||
A categorical feature typically handled with a `tf.sparse.SparseTensor` of
|
||||
IDs.
|
||||
"""
|
||||
|
||||
IdWeightPair = collections.namedtuple( # pylint: disable=invalid-name
|
||||
|
@ -480,6 +480,7 @@ def is_sparse(x):
|
||||
x: A python object to check.
|
||||
|
||||
Returns:
|
||||
`True` iff `x` is a `tf.sparse.SparseTensor` or `tf.compat.v1.SparseTensorValue`.
|
||||
`True` iff `x` is a `tf.sparse.SparseTensor` or
|
||||
`tf.compat.v1.SparseTensorValue`.
|
||||
"""
|
||||
return isinstance(x, (SparseTensor, SparseTensorValue))
|
||||
|
@ -3069,7 +3069,8 @@ def sparse_placeholder(dtype, shape=None, name=None):
|
||||
print(sess.run(y, feed_dict={
|
||||
x: (indices, values, shape)})) # Will succeed.
|
||||
|
||||
sp = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=shape)
|
||||
sp = tf.sparse.SparseTensor(indices=indices, values=values,
|
||||
dense_shape=shape)
|
||||
sp_value = sp.eval(session=sess)
|
||||
print(sess.run(y, feed_dict={x: sp_value})) # Will succeed.
|
||||
```
|
||||
|
@ -193,7 +193,8 @@ def map_fn(fn,
|
||||
|
||||
* `tf.sparse.SparseTensor(st.indices, fn(st.values), st.dense_shape)`
|
||||
(if the function is expressible as TensorFlow ops)
|
||||
* `tf.sparse.SparseTensor(st.indices, tf.map_fn(fn, st.values), st.dense_shape)`
|
||||
* `tf.sparse.SparseTensor(st.indices, tf.map_fn(fn, st.values),
|
||||
st.dense_shape)`
|
||||
(otherwise).
|
||||
|
||||
#### `map_fn` vs. vectorized operations
|
||||
|
@ -1637,7 +1637,8 @@ class RaggedTensor(composite_tensor.CompositeTensor):
|
||||
|
||||
Example:
|
||||
|
||||
>>> st = tf.sparse.SparseTensor(indices=[[0, 0], [0, 1], [0, 2], [1, 0], [3, 0]],
|
||||
>>> st = tf.sparse.SparseTensor(indices=
|
||||
... [[0, 0], [0, 1], [0, 2], [1, 0], [3, 0]],
|
||||
... values=[1, 2, 3, 4, 5],
|
||||
... dense_shape=[4, 3])
|
||||
>>> tf.RaggedTensor.from_sparse(st).to_list()
|
||||
|
@ -156,7 +156,8 @@ def set_intersection(a, b, validate_indices=True):
|
||||
((1, 1, 0), 5),
|
||||
((1, 1, 1), 6),
|
||||
])
|
||||
a = tf.sparse.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2,2,2])
|
||||
a = tf.sparse.SparseTensor(list(a.keys()), list(a.values()),
|
||||
dense_shape=[2,2,2])
|
||||
|
||||
# b = np.array([[{1}, {}], [{4}, {5, 6, 7, 8}]])
|
||||
b = collections.OrderedDict([
|
||||
@ -167,7 +168,8 @@ def set_intersection(a, b, validate_indices=True):
|
||||
((1, 1, 2), 7),
|
||||
((1, 1, 3), 8),
|
||||
])
|
||||
b = tf.sparse.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4])
|
||||
b = tf.sparse.SparseTensor(list(b.keys()), list(b.values()),
|
||||
dense_shape=[2, 2, 4])
|
||||
|
||||
# `tf.sets.intersection` is applied to each aligned pair of sets.
|
||||
tf.sets.intersection(a, b)
|
||||
@ -224,7 +226,8 @@ def set_difference(a, b, aminusb=True, validate_indices=True):
|
||||
((1, 1, 0), 5),
|
||||
((1, 1, 1), 6),
|
||||
])
|
||||
a = tf.sparse.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2, 2, 2])
|
||||
a = tf.sparse.SparseTensor(list(a.keys()), list(a.values()),
|
||||
dense_shape=[2, 2, 2])
|
||||
|
||||
# np.array([[{1, 3}, {2}], [{4, 5}, {5, 6, 7, 8}]])
|
||||
b = collections.OrderedDict([
|
||||
@ -238,7 +241,8 @@ def set_difference(a, b, aminusb=True, validate_indices=True):
|
||||
((1, 1, 2), 7),
|
||||
((1, 1, 3), 8),
|
||||
])
|
||||
b = tf.sparse.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4])
|
||||
b = tf.sparse.SparseTensor(list(b.keys()), list(b.values()),
|
||||
dense_shape=[2, 2, 4])
|
||||
|
||||
# `set_difference` is applied to each aligned pair of sets.
|
||||
tf.sets.difference(a, b)
|
||||
@ -302,7 +306,8 @@ def set_union(a, b, validate_indices=True):
|
||||
((1, 1, 0), 5),
|
||||
((1, 1, 1), 6),
|
||||
])
|
||||
a = tf.sparse.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2, 2, 2])
|
||||
a = tf.sparse.SparseTensor(list(a.keys()), list(a.values()),
|
||||
dense_shape=[2, 2, 2])
|
||||
|
||||
# [[{1, 3}, {2}], [{4, 5}, {5, 6, 7, 8}]]
|
||||
b = collections.OrderedDict([
|
||||
@ -316,7 +321,8 @@ def set_union(a, b, validate_indices=True):
|
||||
((1, 1, 2), 7),
|
||||
((1, 1, 3), 8),
|
||||
])
|
||||
b = tf.sparse.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4])
|
||||
b = tf.sparse.SparseTensor(list(b.keys()), list(b.values()),
|
||||
dense_shape=[2, 2, 4])
|
||||
|
||||
# `set_union` is applied to each aligned pair of sets.
|
||||
tf.sets.union(a, b)
|
||||
|
@ -310,8 +310,9 @@ def flatten(structure, expand_composites=False):
|
||||
Args:
|
||||
structure: an arbitrarily nested structure. Note, numpy arrays are
|
||||
considered atoms and are not flattened.
|
||||
expand_composites: If true, then composite tensors such as tf.sparse.SparseTensor
|
||||
and tf.RaggedTensor are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
|
||||
component tensors.
|
||||
|
||||
Returns:
|
||||
A Python list, the flattened version of the input.
|
||||
@ -364,8 +365,9 @@ def assert_same_structure(nest1, nest2, check_types=True,
|
||||
considered the same if they are both list subtypes (which allows "list"
|
||||
and "_ListWrapper" from trackable dependency tracking to compare
|
||||
equal).
|
||||
expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor`
|
||||
and `tf.RaggedTensor` are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
`tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their
|
||||
component tensors.
|
||||
|
||||
Raises:
|
||||
ValueError: If the two structures do not have the same number of elements or
|
||||
@ -537,8 +539,9 @@ def pack_sequence_as(structure, flat_sequence, expand_composites=False):
|
||||
tuples, and dicts. Note: numpy arrays and strings are considered
|
||||
scalars.
|
||||
flat_sequence: flat sequence to pack.
|
||||
expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor`
|
||||
and `tf.RaggedTensor` are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
`tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their
|
||||
component tensors.
|
||||
|
||||
Returns:
|
||||
packed: `flat_sequence` converted to have the same recursive structure as
|
||||
@ -574,9 +577,9 @@ def map_structure(func, *structure, **kwargs):
|
||||
Note that namedtuples with identical name and fields are always
|
||||
considered to have the same shallow structure.
|
||||
* `expand_composites`: If set to `True`, then composite tensors such
|
||||
as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their
|
||||
component tensors. If `False` (the default), then composite tensors
|
||||
are not expanded.
|
||||
as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into
|
||||
their component tensors. If `False` (the default), then composite
|
||||
tensors are not expanded.
|
||||
|
||||
Returns:
|
||||
A new structure with the same arity as `structure`, whose values correspond
|
||||
@ -762,8 +765,9 @@ def assert_shallow_structure(shallow_tree,
|
||||
`input_tree` have to be the same. Note that even with check_types==True,
|
||||
this function will consider two different namedtuple classes with the same
|
||||
name and _fields attribute to be the same class.
|
||||
expand_composites: If true, then composite tensors such as tf.sparse.SparseTensor
|
||||
and tf.RaggedTensor are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
|
||||
component tensors.
|
||||
Raises:
|
||||
TypeError: If `shallow_tree` is a sequence but `input_tree` is not.
|
||||
TypeError: If the sequence types of `shallow_tree` are different from
|
||||
@ -911,8 +915,9 @@ def flatten_up_to(shallow_tree, input_tree, check_types=True,
|
||||
Note, numpy arrays are considered scalars.
|
||||
check_types: bool. If True, check that each node in shallow_tree has the
|
||||
same type as the corresponding node in input_tree.
|
||||
expand_composites: If true, then composite tensors such as tf.sparse.SparseTensor
|
||||
and tf.RaggedTensor are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
|
||||
component tensors.
|
||||
|
||||
Returns:
|
||||
A Python list, the partially flattened version of `input_tree` according to
|
||||
@ -1015,8 +1020,9 @@ def flatten_with_tuple_paths_up_to(shallow_tree,
|
||||
Note, numpy arrays are considered scalars.
|
||||
check_types: bool. If True, check that each node in shallow_tree has the
|
||||
same type as the corresponding node in input_tree.
|
||||
expand_composites: If true, then composite tensors such as tf.sparse.SparseTensor
|
||||
and tf.RaggedTensor are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
|
||||
component tensors.
|
||||
|
||||
Returns:
|
||||
A Python list, the partially flattened version of `input_tree` according to
|
||||
@ -1233,8 +1239,9 @@ def get_traverse_shallow_structure(traverse_fn, structure,
|
||||
shallow structure of the same type, describing which parts of the
|
||||
substructure to traverse.
|
||||
structure: The structure to traverse.
|
||||
expand_composites: If true, then composite tensors such as tf.sparse.SparseTensor
|
||||
and tf.RaggedTensor are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
|
||||
component tensors.
|
||||
|
||||
Returns:
|
||||
A shallow structure containing python bools, which can be passed to
|
||||
@ -1313,8 +1320,9 @@ def yield_flat_paths(nest, expand_composites=False):
|
||||
|
||||
Args:
|
||||
nest: the value to produce a flattened paths list for.
|
||||
expand_composites: If true, then composite tensors such as tf.sparse.SparseTensor
|
||||
and tf.RaggedTensor are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
|
||||
component tensors.
|
||||
|
||||
Yields:
|
||||
Tuples containing index or key values which form the path to a specific
|
||||
@ -1338,8 +1346,9 @@ def flatten_with_joined_string_paths(structure, separator="/",
|
||||
structure: the nested structure to flatten.
|
||||
separator: string to separate levels of hierarchy in the results, defaults
|
||||
to '/'.
|
||||
expand_composites: If true, then composite tensors such as tf.sparse.SparseTensor
|
||||
and tf.RaggedTensor are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
|
||||
component tensors.
|
||||
|
||||
Returns:
|
||||
A list of (string, data element) tuples.
|
||||
@ -1362,8 +1371,9 @@ def flatten_with_tuple_paths(structure, expand_composites=False):
|
||||
|
||||
Args:
|
||||
structure: the nested structure to flatten.
|
||||
expand_composites: If true, then composite tensors such as tf.sparse.SparseTensor
|
||||
and tf.RaggedTensor are expanded into their component tensors.
|
||||
expand_composites: If true, then composite tensors such as
|
||||
tf.sparse.SparseTensor and tf.RaggedTensor are expanded into their
|
||||
component tensors.
|
||||
|
||||
Returns:
|
||||
A list of `(tuple_path, leaf_element)` tuples. Each `tuple_path` is a tuple
|
||||
|
Loading…
Reference in New Issue
Block a user