From 9fa88362d4a3f2a122aa36e40275fa37e490be78 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Fri, 8 Jan 2021 12:52:15 -0800 Subject: [PATCH] Internal change PiperOrigin-RevId: 350819073 Change-Id: I0845756b8d539709152f81d1b485f37d27e0a4f5 --- .../python/keras/layers/convolutional.py | 7 ---- .../python/keras/layers/convolutional_test.py | 42 ++++--------------- 2 files changed, 9 insertions(+), 40 deletions(-) diff --git a/tensorflow/python/keras/layers/convolutional.py b/tensorflow/python/keras/layers/convolutional.py index d3ff378e7ae..731b51e2862 100644 --- a/tensorflow/python/keras/layers/convolutional.py +++ b/tensorflow/python/keras/layers/convolutional.py @@ -242,8 +242,6 @@ class Conv(Layer): self.built = True def call(self, inputs): - input_shape = inputs.shape - if self._is_causal: # Apply causal padding to inputs for Conv1D. inputs = array_ops.pad(inputs, self._compute_causal_padding(inputs)) @@ -268,11 +266,6 @@ class Conv(Layer): outputs = nn.bias_add( outputs, self.bias, data_format=self._tf_data_format) - if not context.executing_eagerly(): - # Infer the static output shape: - out_shape = self.compute_output_shape(input_shape) - outputs.set_shape(out_shape) - if self.activation is not None: return self.activation(outputs) return outputs diff --git a/tensorflow/python/keras/layers/convolutional_test.py b/tensorflow/python/keras/layers/convolutional_test.py index 3c099639e08..0bc869160ec 100644 --- a/tensorflow/python/keras/layers/convolutional_test.py +++ b/tensorflow/python/keras/layers/convolutional_test.py @@ -174,36 +174,24 @@ class Conv1DTest(keras_parameterized.TestCase): @keras_parameterized.run_all_keras_modes class Conv2DTest(keras_parameterized.TestCase): - def _run_test(self, kwargs, expected_output_shape, spatial_shape=(7, 6)): + def _run_test(self, kwargs, expected_output_shape): num_samples = 2 stack_size = 3 - num_row, num_col = spatial_shape - input_data = None - # Generate valid input data. - if None in spatial_shape: - input_data_shape = (num_samples, num_row or 7, num_col or 6, stack_size) - input_data = 10 * np.random.random(input_data_shape).astype(np.float32) + num_row = 7 + num_col = 6 with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv2D, kwargs=kwargs, input_shape=(num_samples, num_row, num_col, stack_size), - input_data=input_data, expected_output_shape=expected_output_shape) - def _run_test_extra_batch_dim(self, - kwargs, - expected_output_shape, - spatial_shape=(7, 6)): + def _run_test_extra_batch_dim(self, kwargs, expected_output_shape): batch_shape = (2, 11) stack_size = 3 - num_row, num_col = spatial_shape - input_data = None - # Generate valid input data. - if None in spatial_shape: - input_data_shape = batch_shape + (num_row or 7, num_col or 6, stack_size) - input_data = 10 * np.random.random(input_data_shape).astype(np.float32) + num_row = 7 + num_col = 6 with self.cached_session(use_gpu=True): if expected_output_shape is not None: @@ -212,7 +200,6 @@ class Conv2DTest(keras_parameterized.TestCase): keras.layers.Conv2D, kwargs=kwargs, input_shape=batch_shape + (num_row, num_col, stack_size), - input_data=input_data, expected_output_shape=expected_output_shape) @parameterized.named_parameters( @@ -243,24 +230,13 @@ class Conv2DTest(keras_parameterized.TestCase): 'groups': 3, 'filters': 6 }, (None, 5, 4, 6), True), - ('dilation_2_unknown_width', { - 'dilation_rate': (2, 2) - }, (None, None, 2, 2), False, (None, 6)), - ('dilation_2_unknown_height', { - 'dilation_rate': (2, 2) - }, (None, 3, None, 2), False, (7, None)), ) - def test_conv2d(self, - kwargs, - expected_output_shape=None, - requires_gpu=False, - spatial_shape=(7, 6)): + def test_conv2d(self, kwargs, expected_output_shape=None, requires_gpu=False): kwargs['filters'] = kwargs.get('filters', 2) kwargs['kernel_size'] = (3, 3) if not requires_gpu or test.is_gpu_available(cuda_only=True): - self._run_test(kwargs, expected_output_shape, spatial_shape) - self._run_test_extra_batch_dim(kwargs, expected_output_shape, - spatial_shape) + self._run_test(kwargs, expected_output_shape) + self._run_test_extra_batch_dim(kwargs, expected_output_shape) def test_conv2d_regularizers(self): kwargs = {