Make pfor runnable under xla compilation.
PiperOrigin-RevId: 251943109
This commit is contained in:
parent
4f9230e2bd
commit
9f2714e03b
@ -113,15 +113,30 @@ cuda_py_test(
|
||||
"//tensorflow/python:gradients",
|
||||
"//tensorflow/python:logging_ops",
|
||||
"//tensorflow/python:parsing_ops",
|
||||
"//tensorflow/python:random_ops",
|
||||
"//tensorflow/python:session",
|
||||
"//tensorflow/python:tensor_array_grad",
|
||||
"//tensorflow/python:random_ops",
|
||||
"//tensorflow/python:util",
|
||||
],
|
||||
tags = ["no_rocm"],
|
||||
xla_enable_strict_auto_jit = True,
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "xla_control_flow_ops_test",
|
||||
srcs = ["xla_control_flow_ops_test.py"],
|
||||
additional_deps = [
|
||||
":control_flow_ops",
|
||||
":test_util",
|
||||
"//tensorflow/python/compiler/xla:xla",
|
||||
"//tensorflow/python:array_ops",
|
||||
"//tensorflow/python:math_ops",
|
||||
],
|
||||
tags = ["no_rocm"],
|
||||
xla_enable_strict_auto_jit = True,
|
||||
xla_enabled = True,
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "array_test",
|
||||
srcs = ["array_test.py"],
|
||||
|
@ -159,7 +159,13 @@ def pfor(loop_fn, iters, parallel_iterations=None):
|
||||
"""
|
||||
def f():
|
||||
return _pfor_impl(loop_fn, iters, parallel_iterations=parallel_iterations)
|
||||
if context.executing_eagerly():
|
||||
control_flow_context = ops.get_default_graph()._get_control_flow_context() # pylint: disable=protected-access
|
||||
# Note that we wrap into a tf.function if in eager execution mode or under
|
||||
# XLA compilation. The latter is so that we don't compile operations like
|
||||
# tf.placeholder that are created by the loop body.
|
||||
if (context.executing_eagerly() or
|
||||
(control_flow_context is not None and
|
||||
control_flow_context.IsXLAContext())):
|
||||
f = function.defun(f)
|
||||
return f()
|
||||
|
||||
|
@ -2264,10 +2264,10 @@ def _convert_cast(pfor_input):
|
||||
@RegisterPForWithArgs("Xlogy", math_ops.xlogy)
|
||||
@RegisterPForWithArgs("Zeta", math_ops.zeta)
|
||||
def _convert_cwise(pfor_input, op_type, op_func):
|
||||
# Note that ops handled here do not have attributes except "T" and "Tout", and
|
||||
# hence don't need extra arguments passed to the cwise_op call below.
|
||||
# Note that ops handled here do not have attributes except those listed below
|
||||
# and hence don't need extra arguments passed to the cwise_op call below.
|
||||
for attr in pfor_input.op.node_def.attr.keys():
|
||||
assert attr in [u"T", u"Tout"], (op_type, attr)
|
||||
assert attr in [u"T", u"Tout", u"_xla_compile_id"], (op_type, attr)
|
||||
pfor_input.expanddim_inputs_for_broadcast()
|
||||
return wrap(op_func(*[x.t for x in pfor_input.inputs]), True)
|
||||
|
||||
|
@ -0,0 +1,48 @@
|
||||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""XLA tests for pfor."""
|
||||
# pylint: disable=g-direct-tensorflow-import
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from tensorflow.python.compiler.xla import xla
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.ops.parallel_for import control_flow_ops as pfor_control_flow_ops
|
||||
from tensorflow.python.ops.parallel_for.test_util import PForTestCase
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
class PForTest(PForTestCase):
|
||||
|
||||
def test_xla(self):
|
||||
|
||||
def compute(x):
|
||||
return math_ops.reduce_mean(x, axis=0, keepdims=True)
|
||||
|
||||
def vectorized_compute(x):
|
||||
return pfor_control_flow_ops.vectorized_map(compute, x)
|
||||
|
||||
result = xla.compile(vectorized_compute,
|
||||
inputs=[array_ops.ones((10, 5, 3))])
|
||||
self.run_and_assert_equal(result, array_ops.ones((10, 1, 3)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test.main()
|
Loading…
Reference in New Issue
Block a user