Merge pull request #44402 from geetachavan1/cherrypicks_9C64I
[Cherrypick r2.4] Fixed the markdown formatting of client.monitor and client.trace API documentation
This commit is contained in:
commit
9eab49ca92
@ -51,7 +51,7 @@ def trace(service_addr,
|
||||
logdir: Path to save profile data to, typically a TensorBoard log directory.
|
||||
This path must be accessible to both the client and server.
|
||||
e.g. logdir='gs://your_tb_dir'
|
||||
duration_ms: Duration of tracing or monitoring in mliiseconds. Must be
|
||||
duration_ms: Duration of tracing or monitoring in milliseconds. Must be
|
||||
greater than zero.
|
||||
worker_list: An optional TPU only configuration. The list of workers to
|
||||
profile in the current session.
|
||||
@ -65,46 +65,61 @@ def trace(service_addr,
|
||||
UnavailableError: If no trace event was collected.
|
||||
|
||||
Example usage (CPU/GPU):
|
||||
# Start a profiler server before your model runs.
|
||||
|
||||
```python
|
||||
tf.profiler.experimental.server.start(6009)
|
||||
# (Model code goes here).
|
||||
# Send gRPC request to the profiler server to collect a trace of your model.
|
||||
```python
|
||||
tf.profiler.experimental.client.trace('grpc://localhost:6009',
|
||||
'/nfs/tb_log', 2000)
|
||||
# Start a profiler server before your model runs.
|
||||
tf.profiler.experimental.server.start(6009)
|
||||
# (Model code goes here).
|
||||
# Send gRPC request to the profiler server to collect a trace of your model.
|
||||
tf.profiler.experimental.client.trace('grpc://localhost:6009',
|
||||
'/nfs/tb_log', 2000)
|
||||
```
|
||||
|
||||
Example usage (Multiple GPUs):
|
||||
# E.g. your worker IP addresses are 10.0.0.2, 10.0.0.3, 10.0.0.4, and you
|
||||
# would like to schedule start of profiling 1 second from now, for a duration
|
||||
# of 2 seconds.
|
||||
options['delay_ms'] = 1000
|
||||
tf.profiler.experimental.client.trace(
|
||||
'grpc://10.0.0.2:8466,grpc://10.0.0.3:8466,grpc://10.0.0.4:8466',
|
||||
'gs://your_tb_dir',
|
||||
2000,
|
||||
options=options)
|
||||
|
||||
```python
|
||||
# E.g. your worker IP addresses are 10.0.0.2, 10.0.0.3, 10.0.0.4, and you
|
||||
# would like to schedule start of profiling 1 second from now, for a
|
||||
# duration of 2 seconds.
|
||||
options['delay_ms'] = 1000
|
||||
tf.profiler.experimental.client.trace(
|
||||
'grpc://10.0.0.2:8466,grpc://10.0.0.3:8466,grpc://10.0.0.4:8466',
|
||||
'gs://your_tb_dir',
|
||||
2000,
|
||||
options=options)
|
||||
```
|
||||
|
||||
Example usage (TPU):
|
||||
# Send gRPC request to a TPU worker to collect a trace of your model. A
|
||||
# profiler service has been started in the TPU worker at port 8466.
|
||||
|
||||
```python
|
||||
# E.g. your TPU IP address is 10.0.0.2 and you want to profile for 2 seconds.
|
||||
tf.profiler.experimental.client.trace('grpc://10.0.0.2:8466',
|
||||
'gs://your_tb_dir', 2000)
|
||||
# Send gRPC request to a TPU worker to collect a trace of your model. A
|
||||
# profiler service has been started in the TPU worker at port 8466.
|
||||
# E.g. your TPU IP address is 10.0.0.2 and you want to profile for 2 seconds
|
||||
# .
|
||||
tf.profiler.experimental.client.trace('grpc://10.0.0.2:8466',
|
||||
'gs://your_tb_dir', 2000)
|
||||
```
|
||||
|
||||
Example usage (Multiple TPUs):
|
||||
# Send gRPC request to a TPU pod to collect a trace of your model on multiple
|
||||
# TPUs. A profiler service has been started in all the TPU workers at the
|
||||
# port 8466.
|
||||
|
||||
```python
|
||||
# E.g. your TPU IP addresses are 10.0.0.2, 10.0.0.3, 10.0.0.4, and you want to
|
||||
# profile for 2 seconds.
|
||||
tf.profiler.experimental.client.trace('grpc://10.0.0.2:8466',
|
||||
'gs://your_tb_dir',
|
||||
2000, '10.0.0.2,10.0.0.3,10.0.0.4')
|
||||
# Send gRPC request to a TPU pod to collect a trace of your model on
|
||||
# multipleTPUs. A profiler service has been started in all the TPU workers
|
||||
# at theport 8466.
|
||||
# E.g. your TPU IP addresses are 10.0.0.2, 10.0.0.3, 10.0.0.4, and you want
|
||||
# to profile for 2 seconds.
|
||||
tf.profiler.experimental.client.trace('grpc://10.0.0.2:8466',
|
||||
'gs://your_tb_dir',
|
||||
2000, '10.0.0.2,10.0.0.3,10.0.0.4')
|
||||
```
|
||||
|
||||
Launch TensorBoard and point it to the same logdir you provided to this API.
|
||||
$ tensorboard --logdir=/tmp/tb_log (or gs://your_tb_dir in the above examples)
|
||||
|
||||
```shell
|
||||
# logdir can be gs://your_tb_dir as in the above examples.
|
||||
$ tensorboard --logdir=/tmp/tb_log
|
||||
```
|
||||
|
||||
Open your browser and go to localhost:6006/#profile to view profiling results.
|
||||
|
||||
"""
|
||||
@ -136,12 +151,15 @@ def monitor(service_addr, duration_ms, level=1):
|
||||
A string of monitoring output.
|
||||
|
||||
Example usage:
|
||||
# Continuously send gRPC requests to the Cloud TPU to monitor the model
|
||||
# execution.
|
||||
```python
|
||||
for query in range(0, 100):
|
||||
print(tf.profiler.experimental.client.monitor('grpc://10.0.0.2:8466', 1000))
|
||||
|
||||
```python
|
||||
# Continuously send gRPC requests to the Cloud TPU to monitor the model
|
||||
# execution.
|
||||
|
||||
for query in range(0, 100):
|
||||
print(
|
||||
tf.profiler.experimental.client.monitor('grpc://10.0.0.2:8466', 1000))
|
||||
```
|
||||
|
||||
"""
|
||||
return _pywrap_profiler.monitor(
|
||||
|
Loading…
Reference in New Issue
Block a user