Merge pull request #33010 from giuseros:tflite_int8_relu

PiperOrigin-RevId: 276325284
Change-Id: I4318095d1cd32b7cfdf799978d0f5906a4269f91
This commit is contained in:
TensorFlower Gardener 2019-10-23 12:52:08 -07:00
commit 9e0e60617c
5 changed files with 779 additions and 0 deletions

View File

@ -14,6 +14,7 @@ package(
cc_library(
name = "micro_ops",
srcs = [
"activations.cc",
"add.cc",
"arg_min_max.cc",
"ceil.cc",
@ -75,6 +76,7 @@ cc_library(
cc_library(
name = "portable_optimized_micro_ops",
srcs = [
"activations.cc",
"add.cc",
"arg_min_max.cc",
"ceil.cc",
@ -501,3 +503,16 @@ tflite_micro_cc_test(
"//tensorflow/lite/kernels/internal:tensor",
],
)
tflite_micro_cc_test(
name = "activations_test",
srcs = [
"activations_test.cc",
],
deps = [
":all_ops_resolver",
"//tensorflow/lite/c:c_api_internal",
"//tensorflow/lite/experimental/micro:micro_framework",
"//tensorflow/lite/experimental/micro/testing:micro_test",
],
)

View File

@ -0,0 +1,178 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/c_api_internal.h"
#include "tensorflow/lite/experimental/micro/micro_utils.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
namespace tflite {
namespace ops {
namespace micro {
namespace activations {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
template <typename Q>
inline void ReluQuantized(int32_t lower, const RuntimeShape& input_shape,
const Q* input_data, const RuntimeShape& output_shape,
Q* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const Q val = input_data[i];
const Q clamped = val < lower ? lower : val;
output_data[i] = clamped;
}
}
inline void ReluFloat(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const float val = input_data[i];
const float lower = 0.0f;
const float clamped = val < lower ? lower : val;
output_data[i] = clamped;
}
}
inline void Relu6Float(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const float val = input_data[i];
const float upper = 6.0f;
const float lower = 0.0f;
const float clamped = val > upper ? upper : val < lower ? lower : val;
output_data[i] = clamped;
}
}
template <typename Q>
inline void Relu6Quantized(Q lower, Q upper, const RuntimeShape& input_shape,
const Q* input_data,
const RuntimeShape& output_shape, Q* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const Q val = input_data[i];
const Q clamped = val > upper ? upper : val < lower ? lower : val;
output_data[i] = clamped;
}
}
TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
switch (input->type) {
case kTfLiteFloat32: {
ReluFloat(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
return kTfLiteOk;
}
case kTfLiteInt8: {
ReluQuantized<int8_t>(input->params.zero_point, GetTensorShape(input),
GetTensorData<int8_t>(input),
GetTensorShape(output),
GetTensorData<int8_t>(output));
return kTfLiteOk;
}
case kTfLiteUInt8: {
ReluQuantized<uint8_t>(input->params.zero_point, GetTensorShape(input),
GetTensorData<uint8_t>(input),
GetTensorShape(output),
GetTensorData<uint8_t>(output));
return kTfLiteOk;
}
default: {
context->ReportError(context,
"Only float32 is supported currently, got %s",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
}
}
TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
switch (input->type) {
case kTfLiteFloat32: {
Relu6Float(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
return kTfLiteOk;
}
case kTfLiteInt8: {
const int8_t six = FloatToAsymmetricQuantizedInt8(
6.0f, input->params.scale, input->params.zero_point);
const int8_t zero = input->params.zero_point;
Relu6Quantized<int8_t>(
zero, six, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(output), GetTensorData<int8_t>(output));
return kTfLiteOk;
}
case kTfLiteUInt8: {
const uint8_t six = FloatToAsymmetricQuantizedUInt8(
6.0f, input->params.scale, input->params.zero_point);
const uint8_t zero = input->params.zero_point;
Relu6Quantized<uint8_t>(
zero, six, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(output), GetTensorData<uint8_t>(output));
return kTfLiteOk;
}
default: {
context->ReportError(context,
"Only float32 is supported currently, got %s",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
}
}
} // namespace activations
TfLiteRegistration* Register_RELU() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr, activations::ReluPrepare,
activations::ReluEval};
return &r;
}
TfLiteRegistration* Register_RELU6() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr, activations::Relu6Prepare,
activations::Relu6Eval};
return &r;
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@ -0,0 +1,582 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/c_api_internal.h"
#include "tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/experimental/micro/testing/micro_test.h"
#include "tensorflow/lite/experimental/micro/testing/test_utils.h"
namespace tflite {
namespace testing {
namespace {
void TestReluFloat(std::initializer_list<int> input_dims_data,
std::initializer_list<float> input_data,
std::initializer_list<float> expected_output_data,
std::initializer_list<int> output_dims_data,
float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_elements_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateFloatTensor(input_data, input_dims, "input_tensor"),
CreateFloatTensor(output_data, output_dims, "output_tensor"),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, &context);
::tflite::ops::micro::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_RELU, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
const char* init_data = nullptr;
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = nullptr;
node.user_data = user_data;
node.builtin_data = nullptr;
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_elements_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
void TestRelu6Float(std::initializer_list<int> input_dims_data,
std::initializer_list<float> input_data,
std::initializer_list<float> expected_output_data,
std::initializer_list<int> output_dims_data,
float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_elements_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateFloatTensor(input_data, input_dims, "input_tensor"),
CreateFloatTensor(output_data, output_dims, "output_tensor"),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, &context);
::tflite::ops::micro::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_RELU6, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
const char* init_data = nullptr;
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = nullptr;
node.user_data = user_data;
node.builtin_data = nullptr;
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_elements_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
void TestReluUint8(std::initializer_list<int> input_dims_data,
std::initializer_list<uint8_t> input_data,
const float input_min, const float input_max,
std::initializer_list<uint8_t> expected_output_data,
std::initializer_list<int> output_dims_data,
const float output_min, const float output_max,
uint8_t* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_elements_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min,
input_max),
CreateQuantizedTensor(output_data, output_dims, "output_tensor",
output_min, output_max),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, &context);
::tflite::ops::micro::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_RELU, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
const char* init_data = nullptr;
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = nullptr;
node.user_data = user_data;
node.builtin_data = nullptr;
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_elements_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
void TestRelu6Uint8(std::initializer_list<int> input_dims_data,
std::initializer_list<uint8_t> input_data,
const float input_min, const float input_max,
std::initializer_list<uint8_t> expected_output_data,
std::initializer_list<int> output_dims_data,
const float output_min, const float output_max,
uint8_t* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_elements_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min,
input_max),
CreateQuantizedTensor(output_data, output_dims, "output_tensor",
output_min, output_max),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, &context);
::tflite::ops::micro::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_RELU6, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
const char* init_data = nullptr;
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = nullptr;
node.user_data = user_data;
node.builtin_data = nullptr;
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_elements_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
void TestReluInt8(std::initializer_list<int> input_dims_data,
std::initializer_list<int8_t> input_data,
const float input_min, const float input_max,
std::initializer_list<int8_t> expected_output_data,
std::initializer_list<int> output_dims_data,
const float output_min, const float output_max,
int8_t* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_elements_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min,
input_max),
CreateQuantizedTensor(output_data, output_dims, "output_tensor",
output_min, output_max),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, &context);
::tflite::ops::micro::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_RELU, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
const char* init_data = nullptr;
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = nullptr;
node.user_data = user_data;
node.builtin_data = nullptr;
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_elements_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
void TestRelu6Int8(std::initializer_list<int> input_dims_data,
std::initializer_list<int8_t> input_data,
const float input_min, const float input_max,
std::initializer_list<int8_t> expected_output_data,
std::initializer_list<int> output_dims_data,
const float output_min, const float output_max,
int8_t* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_elements_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min,
input_max),
CreateQuantizedTensor(output_data, output_dims, "output_tensor",
output_min, output_max),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, &context);
::tflite::ops::micro::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_RELU6, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
const char* init_data = nullptr;
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = nullptr;
node.user_data = user_data;
node.builtin_data = nullptr;
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_elements_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
} // namespace
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(SimpleReluTestFloat) {
const int output_elements_count = 10;
float output_data[output_elements_count];
tflite::testing::TestReluFloat({2, 1, 5}, // Input shape.
{
1.0,
2.0,
3.0,
4.0,
5.0,
-1.0,
-2.0,
-3.0,
-4.0,
-5.0,
},
{
// Expected results.
1.0,
2.0,
3.0,
4.0,
5.0,
0.0,
0.0,
0.0,
0.0,
0.0,
},
{2, 1, 5}, // Output shape.
output_data);
}
TF_LITE_MICRO_TEST(SimpleRelu6TestFloat) {
const int output_elements_count = 10;
float output_data[output_elements_count];
tflite::testing::TestRelu6Float({2, 1, 5}, // Input shape.
{
4.0,
5.0,
6.0,
7.0,
8.0,
-4.0,
-5.0,
-6.0,
-7.0,
-8.0,
},
{
// Expected results.
4.0,
5.0,
6.0,
6.0,
6.0,
0.0,
0.0,
0.0,
0.0,
0.0,
},
{2, 1, 5}, // Output shape.
output_data);
}
TF_LITE_MICRO_TEST(SimpleReluTestUint8) {
using tflite::testing::F2Q;
const float input_min = -15.9375;
const float input_max = 15.9375;
const float output_min = -15.9375;
const float output_max = 15.9375;
const int output_elements_count = 10;
uint8_t output_data[output_elements_count];
tflite::testing::TestReluUint8(
{2, 1, 5}, // Input shape.
{F2Q(1.0, input_min, input_max), F2Q(2.0, input_min, input_max),
F2Q(3.0, input_min, input_max), F2Q(4.0, input_min, input_max),
F2Q(5.0, input_min, input_max), F2Q(-1.0, input_min, input_max),
F2Q(-2.0, input_min, input_max), F2Q(-3.0, input_min, input_max),
F2Q(-4.0, input_min, input_max), F2Q(-5.0, input_min, input_max)},
input_min, input_max,
{// Expected results.
F2Q(1.0, input_min, input_max), F2Q(2.0, input_min, input_max),
F2Q(3.0, input_min, input_max), F2Q(4.0, input_min, input_max),
F2Q(5.0, input_min, input_max), F2Q(0.0, input_min, input_max),
F2Q(0.0, input_min, input_max), F2Q(0.0, input_min, input_max),
F2Q(0.0, input_min, input_max), F2Q(0.0, input_min, input_max)},
{2, 1, 5}, // Output shape.
output_min, output_max, output_data);
}
TF_LITE_MICRO_TEST(SimpleRelu6TestUint8) {
using tflite::testing::F2Q;
const float input_min = -15.9375;
const float input_max = 15.9375;
const float output_min = -15.9375;
const float output_max = 15.9375;
const int output_elements_count = 10;
uint8_t output_data[output_elements_count];
tflite::testing::TestRelu6Uint8(
{2, 1, 5}, // Input shape.
{F2Q(4.0, input_min, input_max), F2Q(5.0, input_min, input_max),
F2Q(6.0, input_min, input_max), F2Q(7.0, input_min, input_max),
F2Q(8.0, input_min, input_max), F2Q(-1.0, input_min, input_max),
F2Q(-2.0, input_min, input_max), F2Q(-3.0, input_min, input_max),
F2Q(-4.0, input_min, input_max), F2Q(-5.0, input_min, input_max)},
input_min, input_max,
{// Expected results.
F2Q(4.0, input_min, input_max), F2Q(5.0, input_min, input_max),
F2Q(6.0, input_min, input_max), F2Q(6.0, input_min, input_max),
F2Q(6.0, input_min, input_max), F2Q(0.0, input_min, input_max),
F2Q(0.0, input_min, input_max), F2Q(0.0, input_min, input_max),
F2Q(0.0, input_min, input_max), F2Q(0.0, input_min, input_max)},
{2, 1, 5}, // Output shape.
output_min, output_max, output_data);
}
TF_LITE_MICRO_TEST(SimpleReluTestInt8) {
using tflite::testing::F2QS;
const float input_min = -15.9375;
const float input_max = 15.9375;
const float output_min = -15.9375;
const float output_max = 15.9375;
const int output_elements_count = 10;
int8_t output_data[output_elements_count];
tflite::testing::TestReluInt8(
{2, 1, 5}, // Input shape.
{F2QS(1.0, input_min, input_max), F2QS(2.0, input_min, input_max),
F2QS(3.0, input_min, input_max), F2QS(4.0, input_min, input_max),
F2QS(5.0, input_min, input_max), F2QS(-1.0, input_min, input_max),
F2QS(-2.0, input_min, input_max), F2QS(-3.0, input_min, input_max),
F2QS(-4.0, input_min, input_max), F2QS(-5.0, input_min, input_max)},
input_min, input_max,
{// Expected results.
F2QS(1.0, input_min, input_max), F2QS(2.0, input_min, input_max),
F2QS(3.0, input_min, input_max), F2QS(4.0, input_min, input_max),
F2QS(5.0, input_min, input_max), F2QS(0.0, input_min, input_max),
F2QS(0.0, input_min, input_max), F2QS(0.0, input_min, input_max),
F2QS(0.0, input_min, input_max), F2QS(0.0, input_min, input_max)},
{2, 1, 5}, // Output shape.
output_min, output_max, output_data);
}
TF_LITE_MICRO_TEST(SimpleRelu6TestInt8) {
using tflite::testing::F2QS;
const float input_min = -15.9375;
const float input_max = 15.9375;
const float output_min = -15.9375;
const float output_max = 15.9375;
const int output_elements_count = 10;
int8_t output_data[output_elements_count];
tflite::testing::TestRelu6Int8(
{2, 1, 5}, // Input shape.
{F2QS(4.0, input_min, input_max), F2QS(5.0, input_min, input_max),
F2QS(6.0, input_min, input_max), F2QS(7.0, input_min, input_max),
F2QS(8.0, input_min, input_max), F2QS(-1.0, input_min, input_max),
F2QS(-2.0, input_min, input_max), F2QS(-3.0, input_min, input_max),
F2QS(-4.0, input_min, input_max), F2QS(-5.0, input_min, input_max)},
input_min, input_max,
{// Expected results.
F2QS(4.0, input_min, input_max), F2QS(5.0, input_min, input_max),
F2QS(6.0, input_min, input_max), F2QS(6.0, input_min, input_max),
F2QS(6.0, input_min, input_max), F2QS(0.0, input_min, input_max),
F2QS(0.0, input_min, input_max), F2QS(0.0, input_min, input_max),
F2QS(0.0, input_min, input_max), F2QS(0.0, input_min, input_max)},
{2, 1, 5}, // Output shape.
output_min, output_max, output_data);
}
TF_LITE_MICRO_TESTS_END

View File

@ -64,6 +64,8 @@ AllOpsResolver::AllOpsResolver() {
AddBuiltin(BuiltinOperator_ADD, Register_ADD());
AddBuiltin(BuiltinOperator_QUANTIZE, Register_QUANTIZE(), 1, 4);
AddBuiltin(BuiltinOperator_DEQUANTIZE, Register_DEQUANTIZE(), 1, 4);
AddBuiltin(BuiltinOperator_RELU, Register_RELU());
AddBuiltin(BuiltinOperator_RELU6, Register_RELU6());
}
} // namespace micro

View File

@ -59,6 +59,8 @@ TfLiteRegistration* Register_NOT_EQUAL();
TfLiteRegistration* Register_PACK();
TfLiteRegistration* Register_PRELU();
TfLiteRegistration* Register_QUANTIZE();
TfLiteRegistration* Register_RELU();
TfLiteRegistration* Register_RELU6();
TfLiteRegistration* Register_RESHAPE();
TfLiteRegistration* Register_ROUND();
TfLiteRegistration* Register_RSQRT();