Refactor DirectedInterleaveDatasetOp
This commit is contained in:
parent
34af8d45d0
commit
9b6fd77bd6
@ -135,14 +135,31 @@ tf_kernel_library(
|
|||||||
tf_kernel_library(
|
tf_kernel_library(
|
||||||
name = "directed_interleave_dataset_op",
|
name = "directed_interleave_dataset_op",
|
||||||
srcs = ["directed_interleave_dataset_op.cc"],
|
srcs = ["directed_interleave_dataset_op.cc"],
|
||||||
|
hdrs = ["directed_interleave_dataset_op.h"],
|
||||||
deps = [
|
deps = [
|
||||||
"//tensorflow/core:experimental_dataset_ops_op_lib",
|
"//tensorflow/core:experimental_dataset_ops_op_lib",
|
||||||
"//tensorflow/core:framework",
|
"//tensorflow/core:framework",
|
||||||
"//tensorflow/core:lib",
|
"//tensorflow/core:lib",
|
||||||
|
"//tensorflow/core/kernels/data:name_utils",
|
||||||
"//third_party/eigen3",
|
"//third_party/eigen3",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
tf_cc_test(
|
||||||
|
name = "directed_interleave_dataset_op_test",
|
||||||
|
size = "small",
|
||||||
|
srcs = ["directed_interleave_dataset_op_test.cc"],
|
||||||
|
deps = [
|
||||||
|
":directed_interleave_dataset_op",
|
||||||
|
"//tensorflow/core:experimental_dataset_ops_op_lib",
|
||||||
|
"//tensorflow/core:test_main",
|
||||||
|
"//tensorflow/core:testlib",
|
||||||
|
"//tensorflow/core/kernels/data:dataset_test_base",
|
||||||
|
"//tensorflow/core/kernels/data:range_dataset_op",
|
||||||
|
"//tensorflow/core/kernels/data:tensor_slice_dataset_op",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
tf_kernel_library(
|
tf_kernel_library(
|
||||||
name = "group_by_reducer_dataset_op",
|
name = "group_by_reducer_dataset_op",
|
||||||
srcs = ["group_by_reducer_dataset_op.cc"],
|
srcs = ["group_by_reducer_dataset_op.cc"],
|
||||||
|
@ -12,56 +12,31 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||||||
See the License for the specific language governing permissions and
|
See the License for the specific language governing permissions and
|
||||||
limitations under the License.
|
limitations under the License.
|
||||||
==============================================================================*/
|
==============================================================================*/
|
||||||
#include "tensorflow/core/framework/dataset.h"
|
#include "tensorflow/core/kernels/data/experimental/directed_interleave_dataset_op.h"
|
||||||
|
|
||||||
#include "tensorflow/core/framework/partial_tensor_shape.h"
|
#include "tensorflow/core/framework/partial_tensor_shape.h"
|
||||||
#include "tensorflow/core/framework/tensor.h"
|
#include "tensorflow/core/framework/tensor.h"
|
||||||
|
#include "tensorflow/core/kernels/data/name_utils.h"
|
||||||
#include "tensorflow/core/lib/hash/hash.h"
|
#include "tensorflow/core/lib/hash/hash.h"
|
||||||
|
|
||||||
namespace tensorflow {
|
namespace tensorflow {
|
||||||
namespace data {
|
namespace data {
|
||||||
namespace experimental {
|
namespace experimental {
|
||||||
namespace {
|
|
||||||
|
|
||||||
class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
/* static */ constexpr const char* const
|
||||||
public:
|
DirectedInterleaveDatasetOp::kDatasetType;
|
||||||
explicit DirectedInterleaveDatasetOp(OpKernelConstruction* ctx)
|
/* static */ constexpr const char* const
|
||||||
: DatasetOpKernel(ctx) {}
|
DirectedInterleaveDatasetOp::kSelectorInputDataset;
|
||||||
|
/* static */ constexpr const char* const
|
||||||
|
DirectedInterleaveDatasetOp::kDataInputDatasets;
|
||||||
|
/* static */ constexpr const char* const
|
||||||
|
DirectedInterleaveDatasetOp::kOutputTypes;
|
||||||
|
/* static */ constexpr const char* const
|
||||||
|
DirectedInterleaveDatasetOp::kOutputShapes;
|
||||||
|
/* static */ constexpr const char* const
|
||||||
|
DirectedInterleaveDatasetOp::kNumDatasets;
|
||||||
|
|
||||||
void MakeDataset(OpKernelContext* ctx, DatasetBase** output) override {
|
class DirectedInterleaveDatasetOp::Dataset : public DatasetBase {
|
||||||
DatasetBase* selector_input;
|
|
||||||
OP_REQUIRES_OK(ctx,
|
|
||||||
GetDatasetFromVariantTensor(ctx->input(0), &selector_input));
|
|
||||||
|
|
||||||
OP_REQUIRES(
|
|
||||||
ctx,
|
|
||||||
selector_input->output_dtypes().size() == 1 &&
|
|
||||||
selector_input->output_dtypes()[0] == DT_INT64 &&
|
|
||||||
selector_input->output_shapes().size() == 1 &&
|
|
||||||
selector_input->output_shapes()[0].IsCompatibleWith(
|
|
||||||
PartialTensorShape({})),
|
|
||||||
errors::InvalidArgument(
|
|
||||||
"The selector input must be a dataset of scalar int64 elements."));
|
|
||||||
|
|
||||||
std::vector<DatasetBase*> data_inputs;
|
|
||||||
for (size_t i = 1; i < ctx->num_inputs(); ++i) {
|
|
||||||
DatasetBase* input;
|
|
||||||
OP_REQUIRES_OK(ctx, GetDatasetFromVariantTensor(ctx->input(i), &input));
|
|
||||||
data_inputs.push_back(input);
|
|
||||||
|
|
||||||
OP_REQUIRES(
|
|
||||||
ctx, data_inputs[0]->output_dtypes() == input->output_dtypes(),
|
|
||||||
errors::InvalidArgument(
|
|
||||||
"All inputs must have the same output_dtypes. First input "
|
|
||||||
"has types ",
|
|
||||||
DataTypeVectorString(data_inputs[0]->output_dtypes()),
|
|
||||||
", and input ", i - 1, " has types ",
|
|
||||||
DataTypeVectorString(input->output_dtypes())));
|
|
||||||
}
|
|
||||||
*output = new Dataset(ctx, selector_input, std::move(data_inputs));
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
class Dataset : public DatasetBase {
|
|
||||||
public:
|
public:
|
||||||
Dataset(OpKernelContext* ctx, const DatasetBase* selector_input,
|
Dataset(OpKernelContext* ctx, const DatasetBase* selector_input,
|
||||||
std::vector<DatasetBase*> data_inputs)
|
std::vector<DatasetBase*> data_inputs)
|
||||||
@ -92,7 +67,7 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
std::unique_ptr<IteratorBase> MakeIteratorInternal(
|
std::unique_ptr<IteratorBase> MakeIteratorInternal(
|
||||||
const string& prefix) const override {
|
const string& prefix) const override {
|
||||||
return absl::make_unique<Iterator>(Iterator::Params{
|
return absl::make_unique<Iterator>(Iterator::Params{
|
||||||
this, strings::StrCat(prefix, "::DirectedInterleave")});
|
this, name_utils::IteratorPrefix(kDatasetType, prefix)});
|
||||||
}
|
}
|
||||||
|
|
||||||
const DataTypeVector& output_dtypes() const override {
|
const DataTypeVector& output_dtypes() const override {
|
||||||
@ -104,7 +79,7 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
}
|
}
|
||||||
|
|
||||||
string DebugString() const override {
|
string DebugString() const override {
|
||||||
return strings::StrCat("DirectedInterleaveDatasetOp::Dataset");
|
return name_utils::DatasetDebugString(kDatasetType);
|
||||||
}
|
}
|
||||||
|
|
||||||
Status CheckExternalState() const override {
|
Status CheckExternalState() const override {
|
||||||
@ -141,7 +116,7 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
Status Initialize(IteratorContext* ctx) override {
|
Status Initialize(IteratorContext* ctx) override {
|
||||||
mutex_lock l(mu_);
|
mutex_lock l(mu_);
|
||||||
TF_RETURN_IF_ERROR(dataset()->selector_input_->MakeIterator(
|
TF_RETURN_IF_ERROR(dataset()->selector_input_->MakeIterator(
|
||||||
ctx, this, strings::StrCat(prefix()), &selector_input_impl_));
|
ctx, this, prefix(), &selector_input_impl_));
|
||||||
data_input_impls_.resize(dataset()->data_inputs_.size());
|
data_input_impls_.resize(dataset()->data_inputs_.size());
|
||||||
for (size_t i = 0; i < data_input_impls_.size(); ++i) {
|
for (size_t i = 0; i < data_input_impls_.size(); ++i) {
|
||||||
const DatasetBase* data_input = dataset()->data_inputs_[i];
|
const DatasetBase* data_input = dataset()->data_inputs_[i];
|
||||||
@ -164,8 +139,8 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
while (true) {
|
while (true) {
|
||||||
std::vector<Tensor> selector_result;
|
std::vector<Tensor> selector_result;
|
||||||
*end_of_sequence = false;
|
*end_of_sequence = false;
|
||||||
TF_RETURN_IF_ERROR(selector_input_impl_->GetNext(
|
TF_RETURN_IF_ERROR(selector_input_impl_->GetNext(ctx, &selector_result,
|
||||||
ctx, &selector_result, end_of_sequence));
|
end_of_sequence));
|
||||||
if (*end_of_sequence) {
|
if (*end_of_sequence) {
|
||||||
selector_input_impl_.reset();
|
selector_input_impl_.reset();
|
||||||
for (auto& data_input_impl : data_input_impls_) {
|
for (auto& data_input_impl : data_input_impls_) {
|
||||||
@ -175,8 +150,7 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
}
|
}
|
||||||
|
|
||||||
int64 selected_input = selector_result[0].scalar<int64>()();
|
int64 selected_input = selector_result[0].scalar<int64>()();
|
||||||
if (selected_input < 0 ||
|
if (selected_input < 0 || selected_input >= data_input_impls_.size()) {
|
||||||
selected_input >= data_input_impls_.size()) {
|
|
||||||
return errors::InvalidArgument(
|
return errors::InvalidArgument(
|
||||||
"Selector index out of range: ", selected_input,
|
"Selector index out of range: ", selected_input,
|
||||||
" >= ", data_input_impls_.size());
|
" >= ", data_input_impls_.size());
|
||||||
@ -218,8 +192,8 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
if (selector_input_impl_) {
|
if (selector_input_impl_) {
|
||||||
TF_RETURN_IF_ERROR(SaveInput(ctx, writer, selector_input_impl_));
|
TF_RETURN_IF_ERROR(SaveInput(ctx, writer, selector_input_impl_));
|
||||||
} else {
|
} else {
|
||||||
TF_RETURN_IF_ERROR(
|
TF_RETURN_IF_ERROR(writer->WriteScalar(
|
||||||
writer->WriteScalar(full_name("selector_input_impl_empty"), ""));
|
full_name(strings::StrCat("data_input_impl_empty[", i, "]")), ""));
|
||||||
}
|
}
|
||||||
for (size_t i = 0; i < data_input_impls_.size(); ++i) {
|
for (size_t i = 0; i < data_input_impls_.size(); ++i) {
|
||||||
const auto& data_input_impl = data_input_impls_[i];
|
const auto& data_input_impl = data_input_impls_[i];
|
||||||
@ -233,9 +207,11 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
}
|
}
|
||||||
return Status::OK();
|
return Status::OK();
|
||||||
}
|
}
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
|
||||||
Status RestoreInternal(IteratorContext* ctx,
|
Status
|
||||||
IteratorStateReader* reader) override {
|
RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override {
|
||||||
mutex_lock l(mu_);
|
mutex_lock l(mu_);
|
||||||
if (!reader->Contains(full_name("selector_input_impl_empty"))) {
|
if (!reader->Contains(full_name("selector_input_impl_empty"))) {
|
||||||
TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, selector_input_impl_));
|
TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, selector_input_impl_));
|
||||||
@ -243,8 +219,8 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
selector_input_impl_.reset();
|
selector_input_impl_.reset();
|
||||||
}
|
}
|
||||||
for (size_t i = 0; i < data_input_impls_.size(); ++i) {
|
for (size_t i = 0; i < data_input_impls_.size(); ++i) {
|
||||||
if (!reader->Contains(full_name(
|
if (!reader->Contains(
|
||||||
strings::StrCat("data_input_impl_empty[", i, "]")))) {
|
full_name(strings::StrCat("data_input_impl_empty[", i, "]")))) {
|
||||||
TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, data_input_impls_[i]));
|
TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, data_input_impls_[i]));
|
||||||
} else {
|
} else {
|
||||||
data_input_impls_[i].reset();
|
data_input_impls_[i].reset();
|
||||||
@ -259,37 +235,73 @@ class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
|||||||
std::vector<std::unique_ptr<IteratorBase>> data_input_impls_
|
std::vector<std::unique_ptr<IteratorBase>> data_input_impls_
|
||||||
TF_GUARDED_BY(mu_);
|
TF_GUARDED_BY(mu_);
|
||||||
int64 num_active_inputs_ TF_GUARDED_BY(mu_);
|
int64 num_active_inputs_ TF_GUARDED_BY(mu_);
|
||||||
};
|
};
|
||||||
|
|
||||||
static PartialTensorShape MostSpecificCompatibleShape(
|
static PartialTensorShape MostSpecificCompatibleShape(
|
||||||
const PartialTensorShape& ts1, const PartialTensorShape& ts2) {
|
const PartialTensorShape& ts1, const PartialTensorShape& ts2) {
|
||||||
PartialTensorShape output_tensorshape;
|
PartialTensorShape output_tensorshape;
|
||||||
if (ts1.dims() != ts2.dims() || ts1.unknown_rank() || ts2.unknown_rank())
|
if (ts1.dims() != ts2.dims() || ts1.unknown_rank() || ts2.unknown_rank())
|
||||||
return output_tensorshape;
|
return output_tensorshape;
|
||||||
auto dims1 = ts1.dim_sizes();
|
auto dims1 = ts1.dim_sizes();
|
||||||
auto dims2 = ts2.dim_sizes();
|
auto dims2 = ts2.dim_sizes();
|
||||||
for (int d = 0; d < ts1.dims(); d++) {
|
for (int d = 0; d < ts1.dims(); ++d) {
|
||||||
if (dims1[d] == dims2[d])
|
if (dims1[d] == dims2[d])
|
||||||
output_tensorshape.Concatenate(dims1[d]);
|
output_tensorshape.Concatenate(dims1[d]);
|
||||||
else
|
else
|
||||||
output_tensorshape.Concatenate(-1);
|
output_tensorshape.Concatenate(-1);
|
||||||
}
|
}
|
||||||
return output_tensorshape;
|
return output_tensorshape;
|
||||||
|
}
|
||||||
|
|
||||||
|
const DatasetBase* const selector_input_;
|
||||||
|
const std::vector<DatasetBase*> data_inputs_;
|
||||||
|
std::vector<PartialTensorShape> output_shapes_;
|
||||||
|
}; // namespace experimental
|
||||||
|
|
||||||
|
DirectedInterleaveDatasetOp::DirectedInterleaveDatasetOp(
|
||||||
|
OpKernelConstruction* ctx)
|
||||||
|
: DatasetOpKernel(ctx) {}
|
||||||
|
|
||||||
|
void DirectedInterleaveDatasetOp::MakeDataset(OpKernelContext* ctx,
|
||||||
|
DatasetBase** output) {
|
||||||
|
DatasetBase* selector_input;
|
||||||
|
OP_REQUIRES_OK(ctx,
|
||||||
|
GetDatasetFromVariantTensor(ctx->input(0), &selector_input));
|
||||||
|
|
||||||
|
OP_REQUIRES(
|
||||||
|
ctx,
|
||||||
|
selector_input->output_dtypes().size() == 1 &&
|
||||||
|
selector_input->output_dtypes()[0] == DT_INT64 &&
|
||||||
|
selector_input->output_shapes().size() == 1 &&
|
||||||
|
selector_input->output_shapes()[0].IsCompatibleWith(
|
||||||
|
PartialTensorShape({})),
|
||||||
|
errors::InvalidArgument(
|
||||||
|
"The selector input must be a dataset of scalar int64 elements."));
|
||||||
|
|
||||||
|
std::vector<DatasetBase*> data_inputs;
|
||||||
|
for (size_t i = 1; i < ctx->num_inputs(); ++i) {
|
||||||
|
DatasetBase* input;
|
||||||
|
OP_REQUIRES_OK(ctx, GetDatasetFromVariantTensor(ctx->input(i), &input));
|
||||||
|
data_inputs.push_back(input);
|
||||||
|
|
||||||
|
OP_REQUIRES(ctx, data_inputs[0]->output_dtypes() == input->output_dtypes(),
|
||||||
|
errors::InvalidArgument(
|
||||||
|
"All inputs must have the same output_dtypes. First input "
|
||||||
|
"has types ",
|
||||||
|
DataTypeVectorString(data_inputs[0]->output_dtypes()),
|
||||||
|
", and input ", i - 1, " has types ",
|
||||||
|
DataTypeVectorString(input->output_dtypes())));
|
||||||
}
|
}
|
||||||
|
*output = new Dataset(ctx, selector_input, std::move(data_inputs));
|
||||||
|
}
|
||||||
|
|
||||||
const DatasetBase* const selector_input_;
|
namespace {
|
||||||
const std::vector<DatasetBase*> data_inputs_;
|
|
||||||
std::vector<PartialTensorShape> output_shapes_;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
REGISTER_KERNEL_BUILDER(Name("DirectedInterleaveDataset").Device(DEVICE_CPU),
|
REGISTER_KERNEL_BUILDER(Name("DirectedInterleaveDataset").Device(DEVICE_CPU),
|
||||||
DirectedInterleaveDatasetOp);
|
DirectedInterleaveDatasetOp);
|
||||||
REGISTER_KERNEL_BUILDER(
|
REGISTER_KERNEL_BUILDER(
|
||||||
Name("ExperimentalDirectedInterleaveDataset").Device(DEVICE_CPU),
|
Name("ExperimentalDirectedInterleaveDataset").Device(DEVICE_CPU),
|
||||||
DirectedInterleaveDatasetOp);
|
DirectedInterleaveDatasetOp);
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
} // namespace experimental
|
|
||||||
} // namespace data
|
} // namespace data
|
||||||
} // namespace tensorflow
|
} // namespace tensorflow
|
||||||
|
} // namespace tensorflow
|
||||||
|
@ -0,0 +1,47 @@
|
|||||||
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
#ifndef TENSORFLOW_CORE_KERNELS_DATA_EXPERIMENTAL_DIRECTED_INTERLEAVE_DATASET_OP_H_
|
||||||
|
#define TENSORFLOW_CORE_KERNELS_DATA_EXPERIMENTAL_DIRECTED_INTERLEAVE_DATASET_OP_H_
|
||||||
|
|
||||||
|
#include "tensorflow/core/framework/dataset.h"
|
||||||
|
|
||||||
|
namespace tensorflow {
|
||||||
|
namespace data {
|
||||||
|
namespace experimental {
|
||||||
|
|
||||||
|
class DirectedInterleaveDatasetOp : public DatasetOpKernel {
|
||||||
|
public:
|
||||||
|
static constexpr const char* const kDatasetType = "DirectedInterleave";
|
||||||
|
static constexpr const char* const kSelectorInputDataset =
|
||||||
|
"selector_input_dataset";
|
||||||
|
static constexpr const char* const kDataInputDatasets = "data_input_datasets";
|
||||||
|
static constexpr const char* const kOutputTypes = "output_types";
|
||||||
|
static constexpr const char* const kOutputShapes = "output_shapes";
|
||||||
|
static constexpr const char* const kNumDatasets = "N";
|
||||||
|
|
||||||
|
explicit DirectedInterleaveDatasetOp(OpKernelConstruction* ctx);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void MakeDataset(OpKernelContext* ctx, DatasetBase** output) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
class Dataset;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace experimental
|
||||||
|
} // namespace data
|
||||||
|
} // namespace tensorflow
|
||||||
|
|
||||||
|
#endif // TENSORFLOW_CORE_KERNELS_DATA_EXPERIMENTAL_DIRECTED_INTERLEAVE_DATASET_OP_H_
|
Loading…
x
Reference in New Issue
Block a user