Change std::call_once to absl::call_once

absl::call_once is faster and supports fibers.
PiperOrigin-RevId: 292148213
Change-Id: I66e96d735b722a2642508a7e7a1e73de254234d7
This commit is contained in:
George Karpenkov 2020-01-29 08:37:15 -08:00 committed by TensorFlower Gardener
parent b1171f57ad
commit 9b544af08d
38 changed files with 114 additions and 74 deletions

View File

@ -33,6 +33,7 @@ cc_library(
deps = [
":aot_only_var_handle_op",
":embedded_protocol_buffers",
"@com_google_absl//absl/base",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/strings",
"@com_google_absl//absl/types:span",

View File

@ -20,6 +20,7 @@ limitations under the License.
#include <utility>
#include <vector>
#include "absl/base/call_once.h"
#include "llvm-c/Target.h"
#include "tensorflow/compiler/aot/codegen.h"
#include "tensorflow/compiler/aot/flags.h"
@ -142,7 +143,7 @@ static Status ReadProtoFile(const string& fname, protobuf::Message* proto) {
}
}
static std::once_flag targets_init;
static absl::once_flag targets_init;
static void InitializeTargets() {
// Initialize all LLVM targets so we can cross compile.
@ -167,7 +168,7 @@ static void InitializeTargets() {
}
Status Main(const MainFlags& flags) {
std::call_once(targets_init, &InitializeTargets);
absl::call_once(targets_init, &InitializeTargets);
// Process config.
tf2xla::Config config;

View File

@ -261,6 +261,7 @@ cc_library(
"//tensorflow/compiler/xla:parse_flags_from_env",
"//tensorflow/core:framework_internal",
"//tensorflow/core:lib",
"@com_google_absl//absl/base",
"@com_google_absl//absl/strings",
],
)
@ -642,6 +643,7 @@ cc_library(
"//tensorflow/core:protos_all_cc",
"//tensorflow/stream_executor/lib",
"@com_google_absl//absl/algorithm:container",
"@com_google_absl//absl/base",
"@com_google_absl//absl/container:flat_hash_map",
"@com_google_absl//absl/container:flat_hash_set",
"@com_google_absl//absl/container:inlined_vector",

View File

@ -17,6 +17,7 @@ limitations under the License.
#include <mutex> // NOLINT
#include "absl/base/call_once.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_split.h"
#include "absl/strings/strip.h"
@ -34,7 +35,7 @@ XlaOpsCommonFlags* ops_flags;
IntroduceFloatingPointJitterPassFlags* jitter_flags;
std::vector<Flag>* flag_list;
std::once_flag flags_init;
absl::once_flag flags_init;
bool SetterForXlaAutoJitFlag(const string& value) {
int32 opt_level;
@ -215,38 +216,38 @@ void AllocateAndParseFlags() {
} // namespace
bool SetXlaAutoJitFlagFromFlagString(const string& value) {
std::call_once(flags_init, &AllocateAndParseFlags);
absl::call_once(flags_init, &AllocateAndParseFlags);
return SetterForXlaAutoJitFlag(value);
}
BuildXlaOpsPassFlags* GetBuildXlaOpsPassFlags() {
std::call_once(flags_init, &AllocateAndParseFlags);
absl::call_once(flags_init, &AllocateAndParseFlags);
return build_ops_flags;
}
MarkForCompilationPassFlags* GetMarkForCompilationPassFlags() {
std::call_once(flags_init, &AllocateAndParseFlags);
absl::call_once(flags_init, &AllocateAndParseFlags);
return mark_for_compilation_flags;
}
XlaDeviceFlags* GetXlaDeviceFlags() {
std::call_once(flags_init, &AllocateAndParseFlags);
absl::call_once(flags_init, &AllocateAndParseFlags);
return device_flags;
}
const XlaOpsCommonFlags& GetXlaOpsCommonFlags() {
std::call_once(flags_init, &AllocateAndParseFlags);
absl::call_once(flags_init, &AllocateAndParseFlags);
return *ops_flags;
}
const IntroduceFloatingPointJitterPassFlags&
GetIntroduceFloatingPointJitterPassFlags() {
std::call_once(flags_init, &AllocateAndParseFlags);
absl::call_once(flags_init, &AllocateAndParseFlags);
return *jitter_flags;
}
void AppendMarkForCompilationPassFlags(std::vector<Flag>* flag_list) {
std::call_once(flags_init, &AllocateAndParseFlags);
absl::call_once(flags_init, &AllocateAndParseFlags);
AppendMarkForCompilationPassFlagsInternal(flag_list);
}

View File

@ -21,6 +21,7 @@ limitations under the License.
#include <unordered_map>
#include <unordered_set>
#include "absl/base/call_once.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/strings/str_join.h"
@ -1616,8 +1617,8 @@ StatusOr<bool> MarkForCompilationPassImpl::ShouldCompileClusterImpl(
if (!should_compile && global_jit_level_ != OptimizerOptions::OFF &&
device_type.type_string() == DEVICE_CPU) {
static std::once_flag once;
std::call_once(once, [] {
static absl::once_flag once;
absl::call_once(once, [] {
LOG(WARNING)
<< "(One-time warning): Not using XLA:CPU for cluster because envvar "
"TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set. If you want "

View File

@ -881,6 +881,7 @@ cc_library(
":xla_proto_cc",
"//tensorflow/core:framework_internal",
"//tensorflow/core:lib",
"@com_google_absl//absl/base",
"@com_google_absl//absl/container:flat_hash_map",
"@com_google_absl//absl/container:node_hash_map",
"@com_google_absl//absl/strings",

View File

@ -15,9 +15,9 @@ limitations under the License.
#include "tensorflow/compiler/xla/debug_options_flags.h"
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
#include <vector>
#include "absl/base/call_once.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/node_hash_map.h"
#include "absl/strings/str_format.h"
@ -64,7 +64,7 @@ DebugOptions DefaultDebugOptionsIgnoringFlags() {
return opts;
}
static std::once_flag flags_init;
static absl::once_flag flags_init;
static DebugOptions* flag_values;
static std::vector<tensorflow::Flag>* flag_objects;
@ -207,8 +207,8 @@ static void AllocateFlags() {
// warning if a pass was specified but never consumed any fuel, on the
// theory that this is may be a typo.
if (!initial_fuel->empty()) {
static std::once_flag register_atexit_once;
std::call_once(
static absl::once_flag register_atexit_once;
absl::call_once(
register_atexit_once,
+[] { std::atexit(WarnIfFuelWasNeverConsumed); });
}
@ -527,18 +527,18 @@ static void AllocateFlags() {
}
void AppendDebugOptionsFlags(std::vector<tensorflow::Flag>* flag_list) {
std::call_once(flags_init, &AllocateFlags);
absl::call_once(flags_init, &AllocateFlags);
flag_list->insert(flag_list->end(), flag_objects->begin(),
flag_objects->end());
}
xla::DebugOptions GetDebugOptionsFromFlags() {
std::call_once(flags_init, &AllocateFlags);
absl::call_once(flags_init, &AllocateFlags);
return *flag_values;
}
void ResetThreadLocalFuel() {
std::call_once(flags_init, &AllocateFlags);
absl::call_once(flags_init, &AllocateFlags);
thread_fuel.reset(new absl::node_hash_map<string, std::atomic<int64>>());
CHECK(initial_fuel != nullptr);
@ -548,7 +548,7 @@ void ResetThreadLocalFuel() {
}
bool ConsumeFuel(absl::string_view pass, bool* just_ran_out) {
std::call_once(flags_init, &AllocateFlags);
absl::call_once(flags_init, &AllocateFlags);
if (just_ran_out != nullptr) {
*just_ran_out = false;
}

View File

@ -4473,6 +4473,7 @@ cc_library(
"//tensorflow/compiler/xla:types",
"//tensorflow/core:lib",
"@com_google_absl//absl/algorithm:container",
"@com_google_absl//absl/base",
"@com_google_absl//absl/base:core_headers",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/synchronization",

View File

@ -88,6 +88,7 @@ cc_library(
"@com_google_absl//absl/memory",
"@com_google_absl//absl/strings",
":target_machine_features",
"@com_google_absl//absl/base",
"@com_google_absl//absl/types:span",
"//tensorflow/compiler/xla/service:copy_insertion",
"//tensorflow/compiler/xla/service:hlo_casting_utils",

View File

@ -19,7 +19,6 @@ limitations under the License.
#include <string.h>
#include <map>
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
#include <string>
#include <unordered_map>
#include <utility>
@ -27,6 +26,7 @@ limitations under the License.
// IWYU pragma: no_include "llvm/Config/Disassemblers.def.inc"
// IWYU pragma: no_include "llvm/Config/Targets.def.inc"
#include "absl/base/call_once.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "llvm/ADT/StringRef.h"
@ -166,7 +166,7 @@ namespace {
// multiple invocations of the LLVM compilation pipeline with a different set of
// flags. Therefore, we only pass command-line flags to LLVM once, before the
// first module is compiled.
std::once_flag llvm_command_line_options_initialized;
absl::once_flag llvm_command_line_options_initialized;
// This visitor records which HLO instructions should have profiling information
// recorded.
@ -565,8 +565,8 @@ StatusOr<std::unique_ptr<Executable>> CpuCompiler::RunBackend(
auto slow_compile_alarm = SlowCompilationAlarm();
TF_RET_CHECK(stream_exec != nullptr);
std::call_once(llvm_command_line_options_initialized,
&llvm_ir::InitializeLLVMCommandLineOptions, module->config());
absl::call_once(llvm_command_line_options_initialized,
&llvm_ir::InitializeLLVMCommandLineOptions, module->config());
ModuleHook pre_optimization_ir_hook;
ModuleHook post_optimization_ir_hook;
@ -702,9 +702,9 @@ CpuCompiler::CompileAheadOfTime(std::unique_ptr<HloModuleGroup> module_group,
std::vector<std::unique_ptr<HloModule>> modules =
module_group->ConsumeModules();
std::call_once(llvm_command_line_options_initialized,
&llvm_ir::InitializeLLVMCommandLineOptions,
modules[0]->config());
absl::call_once(llvm_command_line_options_initialized,
&llvm_ir::InitializeLLVMCommandLineOptions,
modules[0]->config());
// We can pass just one llvm::TargetOptions when we compile the LLVM module,
// so we bail if the configs have conflicting flags. At the moment, the only

View File

@ -1235,6 +1235,7 @@ cc_library(
"//tensorflow/stream_executor:stream_executor_headers",
"//tensorflow/stream_executor/cuda:cuda_diagnostics",
"//tensorflow/stream_executor/gpu:asm_compiler",
"@com_google_absl//absl/base",
"@com_google_absl//absl/container:node_hash_map",
"@com_google_absl//absl/types:optional",
],
@ -1465,6 +1466,7 @@ cc_library(
"//tensorflow/compiler/xla/service:hlo_module_config",
"//tensorflow/core:stream_executor_no_cuda",
"//tensorflow/stream_executor:stream_executor_headers",
"@com_google_absl//absl/base",
"@com_google_absl//absl/strings",
],
)

View File

@ -18,6 +18,7 @@ limitations under the License.
#include <algorithm>
#include <cmath>
#include "absl/base/call_once.h"
#include "absl/strings/str_replace.h"
#include "tensorflow/compiler/xla/service/gpu/partition_assignment.h"
#include "tensorflow/compiler/xla/service/gpu/stream_executor_util.h"
@ -585,8 +586,8 @@ static StatusOr<bool> DeviceCompare(se::Stream* stream,
if (compiled_ptx_or.ok()) {
compiled_ptx = compiled_ptx_or.ConsumeValueOrDie();
} else {
static std::once_flag ptxas_not_found_logged;
std::call_once(ptxas_not_found_logged, [&]() {
static absl::once_flag ptxas_not_found_logged;
absl::call_once(ptxas_not_found_logged, [&]() {
LOG(WARNING)
<< compiled_ptx_or.status().ToString()
<< "\nRelying on driver to perform ptx compilation. "

View File

@ -19,7 +19,6 @@ limitations under the License.
#include <atomic>
#include <functional>
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
#include <utility>
#include "absl/memory/memory.h"

View File

@ -35,6 +35,7 @@ cc_library(
"//tensorflow/core:lib",
"//tensorflow/core:lib_internal",
"//tensorflow/core/profiler/lib:traceme",
"@com_google_absl//absl/base",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/strings",
"@com_google_absl//absl/strings:str_format",

View File

@ -21,6 +21,7 @@ limitations under the License.
#include <string>
#include <utility>
#include "absl/base/call_once.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
@ -492,8 +493,8 @@ namespace nvptx {
StatusOr<string> CompileToPtx(llvm::Module* module, GpuVersion gpu_version,
const HloModuleConfig& hlo_module_config,
const string& libdevice_dir_path) {
static std::once_flag backend_init_flag;
std::call_once(backend_init_flag, NVPTXBackendInit, hlo_module_config);
static absl::once_flag backend_init_flag;
absl::call_once(backend_init_flag, NVPTXBackendInit, hlo_module_config);
string ptx;
std::unique_ptr<llvm::TargetMachine> target_machine;
@ -712,8 +713,8 @@ namespace amdgpu {
StatusOr<std::vector<uint8>> CompileToHsaco(
llvm::Module* module, GpuVersion gpu_version,
const HloModuleConfig& hlo_module_config, const string& rocdl_dir_path) {
static std::once_flag backend_init_flag;
std::call_once(backend_init_flag, AMDGPUBackendInit, hlo_module_config);
static absl::once_flag backend_init_flag;
absl::call_once(backend_init_flag, AMDGPUBackendInit, hlo_module_config);
std::vector<uint8> hsaco;
std::unique_ptr<llvm::TargetMachine> target_machine;

View File

@ -19,6 +19,7 @@ limitations under the License.
#include <fstream>
#include "absl/base/call_once.h"
#include "tensorflow/compiler/xla/service/algebraic_simplifier.h"
#include "tensorflow/compiler/xla/service/dump.h"
#include "tensorflow/compiler/xla/service/gpu/cublas_gemm_pad_for_tensor_cores.h"
@ -247,8 +248,8 @@ absl::optional<bool> CanShareBufferHint(const HloInstruction* user,
//
// Only prints a warning the first time it's called.
void WarnIfBadDriverJITVersion() {
static std::once_flag run_once;
std::call_once(run_once, [] {
static absl::once_flag run_once;
absl::call_once(run_once, [] {
auto version_or_status = se::cuda::Diagnostician::FindKernelDriverVersion();
if (!version_or_status.ok()) {
LOG(WARNING) << "Couldn't read CUDA driver version.";

View File

@ -16,9 +16,9 @@ limitations under the License.
#include "tensorflow/compiler/xla/service/slow_operation_alarm.h"
#include <list>
#include <mutex> // NOLINT (for std::call_once, not std::mutex)
#include "absl/algorithm/container.h"
#include "absl/base/call_once.h"
#include "absl/base/thread_annotations.h"
#include "absl/memory/memory.h"
#include "absl/synchronization/mutex.h"
@ -29,7 +29,7 @@ namespace {
absl::Mutex mu(absl::kConstInit);
absl::CondVar* ready;
std::once_flag init_flag;
absl::once_flag init_flag;
std::list<SlowOperationAlarm*>* outstanding_alarms ABSL_PT_GUARDED_BY(mu) =
nullptr;
@ -73,7 +73,7 @@ void AlarmLoop() {
}
void ScheduleAlarm(SlowOperationAlarm* alarm) {
std::call_once(init_flag, [] {
absl::call_once(init_flag, [] {
ready = new absl::CondVar();
outstanding_alarms = new std::list<SlowOperationAlarm*>();
(void)tensorflow::Env::Default()->StartThread(

View File

@ -2578,6 +2578,7 @@ tf_cuda_library(
":lib",
":lib_internal",
":protos_all_cc",
"@com_google_absl//absl/base",
"@com_google_absl//absl/algorithm:container",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/strings",

View File

@ -18,6 +18,7 @@ limitations under the License.
#include <cstring>
#include <vector>
#include "absl/base/call_once.h"
#include "tensorflow/core/common_runtime/bfc_allocator.h"
#include "tensorflow/core/common_runtime/pool_allocator.h"
#include "tensorflow/core/framework/allocator.h"
@ -33,8 +34,8 @@ namespace tensorflow {
/*static*/ ProcessState* ProcessState::singleton() {
static ProcessState* instance = new ProcessState;
static std::once_flag f;
std::call_once(f, []() {
static absl::once_flag f;
absl::call_once(f, []() {
AllocatorFactoryRegistry::singleton()->process_state_ = instance;
});

View File

@ -23,6 +23,7 @@ limitations under the License.
#include <utility>
#include <vector>
#include "absl/base/call_once.h"
#include "tensorflow/core/framework/allocation_description.pb.h"
#include "tensorflow/core/framework/attr_value_util.h"
#include "tensorflow/core/framework/device_attributes.pb.h"
@ -1226,8 +1227,8 @@ void LoadDynamicKernelsInternal() {
void LoadDynamicKernels() {
// TODO(gunan): As more features are available, add intelligent kernel
// selection, and dropping unsuitable kernel logic here.
static std::once_flag dll_loader_flag;
std::call_once(dll_loader_flag, LoadDynamicKernelsInternal);
static absl::once_flag dll_loader_flag;
absl::call_once(dll_loader_flag, LoadDynamicKernelsInternal);
}
void* GlobalKernelRegistry() {

View File

@ -536,6 +536,7 @@ tf_cuda_library(
"//tensorflow/stream_executor/gpu:asm_compiler",
"//tensorflow/stream_executor/gpu:redzone_allocator",
"@com_google_absl//absl/algorithm:container",
"@com_google_absl//absl/base",
"@com_google_absl//absl/types:span",
],
)
@ -782,7 +783,7 @@ cc_library(
deps = select({
":no_mkldnn_contraction_kernel": [":eigen_contraction_kernel_no_mkl"],
"//conditions:default": [":eigen_contraction_kernel_with_mkl"],
}),
}) + ["@com_google_absl//absl/base"],
)
cc_library(
@ -801,6 +802,7 @@ cc_library(
],
}),
deps = [
"@com_google_absl//absl/base",
"//third_party/eigen3",
"//tensorflow/core/platform:dynamic_annotations",
] + select({
@ -820,6 +822,7 @@ cc_library(
deps = [
"//tensorflow/core/platform:dynamic_annotations",
"//third_party/eigen3",
"@com_google_absl//absl/base",
],
)
@ -1888,6 +1891,7 @@ tf_cc_test(
"//tensorflow/core:test",
"//tensorflow/core:test_main",
"//tensorflow/core:testlib",
"@com_google_absl//absl/base",
],
)
@ -4978,6 +4982,7 @@ cc_library(
)
PARSING_DEPS = [
"@com_google_absl//absl/base",
"//tensorflow/core:core_cpu_internal",
"//tensorflow/core:framework",
"//tensorflow/core:lib",
@ -6868,6 +6873,7 @@ cc_library(
"//tensorflow/core:protos_all_cc_impl",
"//third_party/eigen3",
"//third_party/fft2d:fft2d_headers",
"@com_google_absl//absl/base",
"@com_google_protobuf//:protobuf",
"@fft2d",
"@gemmlowp",

View File

@ -28,7 +28,6 @@ limitations under the License.
#include <atomic>
#include <map>
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
#include <vector>
#include "tensorflow/core/framework/allocator.h"

View File

@ -17,6 +17,8 @@ limitations under the License.
#include <mutex> // NOLINT(build/c++11)
#include "absl/base/call_once.h"
// We need a pair of compile time and runtime flags to disable compilation of
// custom contraction kernels for unsupported architectures (e.g. Android,
// iOS, ARM and PPC CPUs, etc...), and to be able to fallback on default Eigen
@ -42,8 +44,8 @@ EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE bool UseCustomContractionKernels() {
// This subroutine should not be used in GPU. In case it is, a custom kernel
// should always be used
#if !defined __NVCC__ && !defined __HIP_DEVICE_COMPILE__
static std::once_flag initialized;
std::call_once(initialized, [&] {
static absl::once_flag initialized;
absl::call_once(initialized, [&] {
char* flag = std::getenv("TENSORFLOW_USE_CUSTOM_CONTRACTION_KERNEL");
if (flag && (strcmp(flag, "false") == 0 || strcmp(flag, "0") == 0)) {
use_custom_contraction_kernel = false;

View File

@ -19,6 +19,7 @@ limitations under the License.
#include <unordered_set>
#include <vector>
#include "absl/base/call_once.h"
#include "tensorflow/core/common_runtime/metrics.h"
#include "tensorflow/core/example/example.pb.h"
#include "tensorflow/core/example/feature.pb.h"
@ -70,7 +71,7 @@ class ParseExampleOp : public OpKernel {
OP_REQUIRES_OK(ctx, GetInputListKeys(ctx, "dense_keys", &dense_keys_t));
OP_REQUIRES_OK(ctx, GetInputListKeys(ctx, "sparse_keys", &sparse_keys_t));
}
std::call_once(flag_, [&dense_keys_t, &sparse_keys_t, &ragged_keys_t]() {
absl::call_once(flag_, [&dense_keys_t, &sparse_keys_t, &ragged_keys_t]() {
metrics::RecordParseDenseFeature(dense_keys_t.size());
metrics::RecordParseSparseFeature(sparse_keys_t.size());
metrics::RecordParseRaggedFeature(ragged_keys_t.size());
@ -284,7 +285,7 @@ class ParseExampleOp : public OpKernel {
ParseExampleAttrs attrs_;
int op_version_;
std::once_flag flag_;
absl::once_flag flag_;
};
REGISTER_KERNEL_BUILDER(Name("ParseExample").Device(DEVICE_CPU),
@ -434,7 +435,7 @@ class ParseSequenceExampleOp : public OpKernel {
&feature_list_sparse_keys));
OP_REQUIRES_OK(ctx, ctx->input("feature_list_ragged_keys",
&feature_list_ragged_keys));
std::call_once(flag_, [&]() {
absl::call_once(flag_, [&]() {
metrics::RecordParseDenseFeature(
context_dense_keys->NumElements() +
feature_list_dense_keys->NumElements());
@ -707,7 +708,7 @@ class ParseSequenceExampleOp : public OpKernel {
ParseSequenceExampleAttrs attrs_;
int op_version_;
std::once_flag flag_;
absl::once_flag flag_;
};
REGISTER_KERNEL_BUILDER(Name("ParseSequenceExample").Device(DEVICE_CPU),
@ -753,7 +754,7 @@ class ParseSingleSequenceExampleOp : public OpKernel {
attrs_.num_feature_list_dense);
std::vector<string> feature_list_sparse_keys_t(
attrs_.num_feature_list_sparse);
std::call_once(
absl::call_once(
flag_, [&context_dense_keys_t, &context_sparse_keys_t,
&feature_list_dense_keys_t, &feature_list_sparse_keys_t]() {
metrics::RecordParseDenseFeature(context_dense_keys_t.size() +
@ -1129,7 +1130,7 @@ class ParseSingleSequenceExampleOp : public OpKernel {
protected:
ParseSingleSequenceExampleAttrs attrs_;
std::once_flag flag_;
absl::once_flag flag_;
};
REGISTER_KERNEL_BUILDER(Name("ParseSingleSequenceExample").Device(DEVICE_CPU),

View File

@ -15,6 +15,7 @@ limitations under the License.
#include <unordered_map>
#include "absl/base/call_once.h"
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h"
#include "tensorflow/core/example/example.pb.h"
#include "tensorflow/core/example/feature.pb.h"
@ -82,11 +83,11 @@ template <typename T>
struct ExampleStore {
private:
static ExampleTensorMap serialized_example;
static std::once_flag flags_init;
static absl::once_flag flags_init;
public:
static ExampleTensorMap& GetSerializedExample() {
std::call_once(flags_init, [] {
absl::call_once(flags_init, [] {
AddExample(&serialized_example, 10, 1, 1);
AddExample(&serialized_example, 100, 1, 1);
AddExample(&serialized_example, 1000, 1, 1);
@ -133,7 +134,7 @@ struct ExampleStore {
template <typename T>
ExampleTensorMap ExampleStore<T>::serialized_example;
template <typename T>
std::once_flag ExampleStore<T>::flags_init;
absl::once_flag ExampleStore<T>::flags_init;
template struct ExampleStore<BytesFiller>;
template struct ExampleStore<Int64Filler>;

View File

@ -21,6 +21,7 @@ limitations under the License.
#include "google/protobuf/any.pb.h"
#include "absl/algorithm/container.h"
#include "absl/base/call_once.h"
#include "tensorflow/core/platform/logger.h"
#include "tensorflow/core/protobuf/autotuning.pb.h"
#include "tensorflow/core/protobuf/conv_autotuning.pb.h"
@ -42,8 +43,8 @@ se::DeviceMemoryBase WrapRedzoneBestEffort(se::RedzoneAllocator* rz_allocator,
}
auto output_rz_or = rz_allocator->AllocateBytes(buffer.size());
if (!output_rz_or.ok()) {
static std::once_flag rz_allocation_failure_logged;
std::call_once(rz_allocation_failure_logged, []() {
static absl::once_flag rz_allocation_failure_logged;
absl::call_once(rz_allocation_failure_logged, []() {
LOG(WARNING) << "Failed to allocate memory for convolution redzone "
<< "checking; skipping this check. This is benign and only "
<< "means that we won't check cudnn for out-of-bounds reads "
@ -62,8 +63,8 @@ void CheckRedzones(const se::RedzoneAllocator& rz_allocator,
se::port::StatusOr<se::RedzoneAllocator::RedzoneCheckStatus> rz_status =
rz_allocator.CheckRedzones();
if (!rz_status.ok()) {
static std::once_flag failure_logged;
std::call_once(failure_logged, [&]() {
static absl::once_flag failure_logged;
absl::call_once(failure_logged, [&]() {
LOG(WARNING) << "Failed to check cudnn convolutions for out-of-bounds "
<< "reads and writes with an error message: '"
<< rz_status.status().error_message()

View File

@ -35,6 +35,7 @@ cc_library(
"@local_config_rocm//rocm:rccl",
"//tensorflow/core:gpu_runtime",
]) + if_cuda_or_rocm([
"@com_google_absl//absl/base",
"@com_google_absl//absl/container:flat_hash_map",
"@com_google_absl//absl/memory",
"//tensorflow/core:core_cpu",

View File

@ -18,6 +18,7 @@ limitations under the License.
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
#include "absl/base/call_once.h"
#include "tensorflow/core/lib/core/refcount.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/platform/env.h"
@ -237,8 +238,8 @@ NcclManager* NcclManager::instance() {
#if TENSORFLOW_USE_ROCM
// singleton does not count against total instances
// see comment above in Collective constructor concerning ROCm platform
static std::once_flag once;
std::call_once(once, [] { --NcclManager::instance_count; });
static absl::once_flag once;
absl::call_once(once, [] { --NcclManager::instance_count; });
#endif
return instance;
}

View File

@ -164,6 +164,7 @@ cc_library(
":byte_order",
":logging",
":platform_port",
"@com_google_absl//absl/base",
],
)

View File

@ -18,6 +18,7 @@ limitations under the License.
#include <mutex>
#include <string>
#include "absl/base/call_once.h"
#include "tensorflow/core/platform/byte_order.h"
#include "tensorflow/core/platform/cpu_info.h"
#include "tensorflow/core/platform/logging.h"
@ -91,12 +92,12 @@ class CPUFeatureGuard {
CPUFeatureGuard g_cpu_feature_guard_singleton;
std::once_flag g_cpu_feature_guard_warn_once_flag;
absl::once_flag g_cpu_feature_guard_warn_once_flag;
} // namespace
void InfoAboutUnusedCPUFeatures() {
std::call_once(g_cpu_feature_guard_warn_once_flag, [] {
absl::call_once(g_cpu_feature_guard_warn_once_flag, [] {
string missing_instructions;
#if defined(_MSC_VER) && !defined(__clang__)

View File

@ -14,6 +14,8 @@ limitations under the License.
==============================================================================*/
#include "tensorflow/core/platform/cpu_info.h"
#include "absl/base/call_once.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/platform.h"
#include "tensorflow/core/platform/types.h"
@ -297,12 +299,12 @@ class CPUIDInfo {
int model_num_;
};
std::once_flag cpuid_once_flag;
absl::once_flag cpuid_once_flag;
void InitCPUIDInfo() {
// This ensures that CPUIDInfo::Initialize() is called exactly
// once regardless of how many threads concurrently call us
std::call_once(cpuid_once_flag, CPUIDInfo::Initialize);
absl::call_once(cpuid_once_flag, CPUIDInfo::Initialize);
}
#endif // PLATFORM_IS_X86

View File

@ -23,6 +23,7 @@ limitations under the License.
#include <windows.h>
#endif
#include "absl/base/call_once.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/profile_utils/android_armv7a_cpu_utils_helper.h"
@ -134,8 +135,8 @@ static ICpuUtilsHelper* cpu_utils_helper_instance_ = nullptr;
}
/* static */ ICpuUtilsHelper& CpuUtils::GetCpuUtilsHelperSingletonInstance() {
static std::once_flag flag;
std::call_once(flag, []() {
static absl::once_flag flag;
absl::call_once(flag, []() {
if (cpu_utils_helper_instance_ != nullptr) {
LOG(FATAL) << "cpu_utils_helper_instance_ is already instantiated.";
}

View File

@ -63,6 +63,7 @@ cc_library(
"//tensorflow/stream_executor/platform",
],
) + tf_additional_cuda_platform_deps() + [
"@com_google_absl//absl/base",
"@com_google_absl//absl/base:core_headers",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/strings",

View File

@ -15,6 +15,7 @@ limitations under the License.
#include "tensorflow/stream_executor/cuda/cuda_platform.h"
#include "absl/base/call_once.h"
#include "absl/base/const_init.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
@ -76,8 +77,8 @@ CudaPlatform::~CudaPlatform() {}
void CudaPlatform::InspectNumaNodes() {
// To get NUMA node information, we need to create all executors, so we can
// examine their device descriptions to see their bus assignments.
static std::once_flag once;
std::call_once(once, [&] {
static absl::once_flag once;
absl::call_once(once, [&] {
StreamExecutorConfig config;
for (int i = 0; i < VisibleDeviceCount(); i++) {
config.ordinal = i;

View File

@ -237,6 +237,7 @@ cc_library(
],
deps = if_gpu_is_configured([
"asm_compiler",
"@com_google_absl//absl/base",
"@com_google_absl//absl/container:fixed_array",
"@com_google_absl//absl/strings:str_format",
"@com_google_absl//absl/types:optional",

View File

@ -15,6 +15,7 @@ limitations under the License.
#include "tensorflow/stream_executor/gpu/redzone_allocator.h"
#include "absl/base/call_once.h"
#include "absl/container/fixed_array.h"
#include "absl/strings/str_format.h"
#include "absl/types/optional.h"
@ -307,8 +308,8 @@ port::StatusOr<RedzoneCheckStatus> RedzoneAllocator::CheckRedzones() const {
if (compiled_ptx_or.ok()) {
compiled_ptx = compiled_ptx_or.ValueOrDie();
} else {
static std::once_flag ptxas_not_found_logged;
std::call_once(ptxas_not_found_logged, [&]() {
static absl::once_flag ptxas_not_found_logged;
absl::call_once(ptxas_not_found_logged, [&]() {
LOG(WARNING) << compiled_ptx_or.status().ToString()
<< "\nRelying on driver to perform ptx compilation. "
<< "\nModify $PATH to customize ptxas location."

View File

@ -136,6 +136,7 @@ cc_library(
":rocm_driver",
":rocm_gpu_executor",
":rocm_platform_id",
"@com_google_absl//absl/base",
"@com_google_absl//absl/memory",
"//tensorflow/stream_executor", # buildcleaner: keep
"//tensorflow/stream_executor:executor_cache",

View File

@ -15,6 +15,7 @@ limitations under the License.
#include "tensorflow/stream_executor/rocm/rocm_platform.h"
#include "absl/base/call_once.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_format.h"
#include "tensorflow/stream_executor/gpu/gpu_driver.h"
@ -38,8 +39,8 @@ ROCmPlatform::~ROCmPlatform() {}
void ROCmPlatform::InspectNumaNodes() {
// To get NUMA node information, we need to create all executors, so we can
// examine their device descriptions to see their bus assignments.
std::once_flag once;
std::call_once(once, [&] {
absl::once_flag once;
absl::call_once(once, [&] {
StreamExecutorConfig config;
for (int i = 0; i < VisibleDeviceCount(); i++) {
config.ordinal = i;