Change std::call_once to absl::call_once
absl::call_once is faster and supports fibers. PiperOrigin-RevId: 292148213 Change-Id: I66e96d735b722a2642508a7e7a1e73de254234d7
This commit is contained in:
parent
b1171f57ad
commit
9b544af08d
@ -33,6 +33,7 @@ cc_library(
|
||||
deps = [
|
||||
":aot_only_var_handle_op",
|
||||
":embedded_protocol_buffers",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@com_google_absl//absl/types:span",
|
||||
|
@ -20,6 +20,7 @@ limitations under the License.
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "llvm-c/Target.h"
|
||||
#include "tensorflow/compiler/aot/codegen.h"
|
||||
#include "tensorflow/compiler/aot/flags.h"
|
||||
@ -142,7 +143,7 @@ static Status ReadProtoFile(const string& fname, protobuf::Message* proto) {
|
||||
}
|
||||
}
|
||||
|
||||
static std::once_flag targets_init;
|
||||
static absl::once_flag targets_init;
|
||||
|
||||
static void InitializeTargets() {
|
||||
// Initialize all LLVM targets so we can cross compile.
|
||||
@ -167,7 +168,7 @@ static void InitializeTargets() {
|
||||
}
|
||||
|
||||
Status Main(const MainFlags& flags) {
|
||||
std::call_once(targets_init, &InitializeTargets);
|
||||
absl::call_once(targets_init, &InitializeTargets);
|
||||
|
||||
// Process config.
|
||||
tf2xla::Config config;
|
||||
|
@ -261,6 +261,7 @@ cc_library(
|
||||
"//tensorflow/compiler/xla:parse_flags_from_env",
|
||||
"//tensorflow/core:framework_internal",
|
||||
"//tensorflow/core:lib",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/strings",
|
||||
],
|
||||
)
|
||||
@ -642,6 +643,7 @@ cc_library(
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/stream_executor/lib",
|
||||
"@com_google_absl//absl/algorithm:container",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/container:flat_hash_map",
|
||||
"@com_google_absl//absl/container:flat_hash_set",
|
||||
"@com_google_absl//absl/container:inlined_vector",
|
||||
|
@ -17,6 +17,7 @@ limitations under the License.
|
||||
|
||||
#include <mutex> // NOLINT
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/strings/numbers.h"
|
||||
#include "absl/strings/str_split.h"
|
||||
#include "absl/strings/strip.h"
|
||||
@ -34,7 +35,7 @@ XlaOpsCommonFlags* ops_flags;
|
||||
IntroduceFloatingPointJitterPassFlags* jitter_flags;
|
||||
|
||||
std::vector<Flag>* flag_list;
|
||||
std::once_flag flags_init;
|
||||
absl::once_flag flags_init;
|
||||
|
||||
bool SetterForXlaAutoJitFlag(const string& value) {
|
||||
int32 opt_level;
|
||||
@ -215,38 +216,38 @@ void AllocateAndParseFlags() {
|
||||
} // namespace
|
||||
|
||||
bool SetXlaAutoJitFlagFromFlagString(const string& value) {
|
||||
std::call_once(flags_init, &AllocateAndParseFlags);
|
||||
absl::call_once(flags_init, &AllocateAndParseFlags);
|
||||
return SetterForXlaAutoJitFlag(value);
|
||||
}
|
||||
|
||||
BuildXlaOpsPassFlags* GetBuildXlaOpsPassFlags() {
|
||||
std::call_once(flags_init, &AllocateAndParseFlags);
|
||||
absl::call_once(flags_init, &AllocateAndParseFlags);
|
||||
return build_ops_flags;
|
||||
}
|
||||
|
||||
MarkForCompilationPassFlags* GetMarkForCompilationPassFlags() {
|
||||
std::call_once(flags_init, &AllocateAndParseFlags);
|
||||
absl::call_once(flags_init, &AllocateAndParseFlags);
|
||||
return mark_for_compilation_flags;
|
||||
}
|
||||
|
||||
XlaDeviceFlags* GetXlaDeviceFlags() {
|
||||
std::call_once(flags_init, &AllocateAndParseFlags);
|
||||
absl::call_once(flags_init, &AllocateAndParseFlags);
|
||||
return device_flags;
|
||||
}
|
||||
|
||||
const XlaOpsCommonFlags& GetXlaOpsCommonFlags() {
|
||||
std::call_once(flags_init, &AllocateAndParseFlags);
|
||||
absl::call_once(flags_init, &AllocateAndParseFlags);
|
||||
return *ops_flags;
|
||||
}
|
||||
|
||||
const IntroduceFloatingPointJitterPassFlags&
|
||||
GetIntroduceFloatingPointJitterPassFlags() {
|
||||
std::call_once(flags_init, &AllocateAndParseFlags);
|
||||
absl::call_once(flags_init, &AllocateAndParseFlags);
|
||||
return *jitter_flags;
|
||||
}
|
||||
|
||||
void AppendMarkForCompilationPassFlags(std::vector<Flag>* flag_list) {
|
||||
std::call_once(flags_init, &AllocateAndParseFlags);
|
||||
absl::call_once(flags_init, &AllocateAndParseFlags);
|
||||
AppendMarkForCompilationPassFlagsInternal(flag_list);
|
||||
}
|
||||
|
||||
|
@ -21,6 +21,7 @@ limitations under the License.
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/container/flat_hash_map.h"
|
||||
#include "absl/container/flat_hash_set.h"
|
||||
#include "absl/strings/str_join.h"
|
||||
@ -1616,8 +1617,8 @@ StatusOr<bool> MarkForCompilationPassImpl::ShouldCompileClusterImpl(
|
||||
|
||||
if (!should_compile && global_jit_level_ != OptimizerOptions::OFF &&
|
||||
device_type.type_string() == DEVICE_CPU) {
|
||||
static std::once_flag once;
|
||||
std::call_once(once, [] {
|
||||
static absl::once_flag once;
|
||||
absl::call_once(once, [] {
|
||||
LOG(WARNING)
|
||||
<< "(One-time warning): Not using XLA:CPU for cluster because envvar "
|
||||
"TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set. If you want "
|
||||
|
@ -881,6 +881,7 @@ cc_library(
|
||||
":xla_proto_cc",
|
||||
"//tensorflow/core:framework_internal",
|
||||
"//tensorflow/core:lib",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/container:flat_hash_map",
|
||||
"@com_google_absl//absl/container:node_hash_map",
|
||||
"@com_google_absl//absl/strings",
|
||||
|
@ -15,9 +15,9 @@ limitations under the License.
|
||||
|
||||
#include "tensorflow/compiler/xla/debug_options_flags.h"
|
||||
|
||||
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
|
||||
#include <vector>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/container/flat_hash_map.h"
|
||||
#include "absl/container/node_hash_map.h"
|
||||
#include "absl/strings/str_format.h"
|
||||
@ -64,7 +64,7 @@ DebugOptions DefaultDebugOptionsIgnoringFlags() {
|
||||
return opts;
|
||||
}
|
||||
|
||||
static std::once_flag flags_init;
|
||||
static absl::once_flag flags_init;
|
||||
static DebugOptions* flag_values;
|
||||
static std::vector<tensorflow::Flag>* flag_objects;
|
||||
|
||||
@ -207,8 +207,8 @@ static void AllocateFlags() {
|
||||
// warning if a pass was specified but never consumed any fuel, on the
|
||||
// theory that this is may be a typo.
|
||||
if (!initial_fuel->empty()) {
|
||||
static std::once_flag register_atexit_once;
|
||||
std::call_once(
|
||||
static absl::once_flag register_atexit_once;
|
||||
absl::call_once(
|
||||
register_atexit_once,
|
||||
+[] { std::atexit(WarnIfFuelWasNeverConsumed); });
|
||||
}
|
||||
@ -527,18 +527,18 @@ static void AllocateFlags() {
|
||||
}
|
||||
|
||||
void AppendDebugOptionsFlags(std::vector<tensorflow::Flag>* flag_list) {
|
||||
std::call_once(flags_init, &AllocateFlags);
|
||||
absl::call_once(flags_init, &AllocateFlags);
|
||||
flag_list->insert(flag_list->end(), flag_objects->begin(),
|
||||
flag_objects->end());
|
||||
}
|
||||
|
||||
xla::DebugOptions GetDebugOptionsFromFlags() {
|
||||
std::call_once(flags_init, &AllocateFlags);
|
||||
absl::call_once(flags_init, &AllocateFlags);
|
||||
return *flag_values;
|
||||
}
|
||||
|
||||
void ResetThreadLocalFuel() {
|
||||
std::call_once(flags_init, &AllocateFlags);
|
||||
absl::call_once(flags_init, &AllocateFlags);
|
||||
|
||||
thread_fuel.reset(new absl::node_hash_map<string, std::atomic<int64>>());
|
||||
CHECK(initial_fuel != nullptr);
|
||||
@ -548,7 +548,7 @@ void ResetThreadLocalFuel() {
|
||||
}
|
||||
|
||||
bool ConsumeFuel(absl::string_view pass, bool* just_ran_out) {
|
||||
std::call_once(flags_init, &AllocateFlags);
|
||||
absl::call_once(flags_init, &AllocateFlags);
|
||||
if (just_ran_out != nullptr) {
|
||||
*just_ran_out = false;
|
||||
}
|
||||
|
@ -4473,6 +4473,7 @@ cc_library(
|
||||
"//tensorflow/compiler/xla:types",
|
||||
"//tensorflow/core:lib",
|
||||
"@com_google_absl//absl/algorithm:container",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/base:core_headers",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/synchronization",
|
||||
|
@ -88,6 +88,7 @@ cc_library(
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/strings",
|
||||
":target_machine_features",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/types:span",
|
||||
"//tensorflow/compiler/xla/service:copy_insertion",
|
||||
"//tensorflow/compiler/xla/service:hlo_casting_utils",
|
||||
|
@ -19,7 +19,6 @@ limitations under the License.
|
||||
#include <string.h>
|
||||
|
||||
#include <map>
|
||||
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
@ -27,6 +26,7 @@ limitations under the License.
|
||||
|
||||
// IWYU pragma: no_include "llvm/Config/Disassemblers.def.inc"
|
||||
// IWYU pragma: no_include "llvm/Config/Targets.def.inc"
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "llvm/ADT/StringRef.h"
|
||||
@ -166,7 +166,7 @@ namespace {
|
||||
// multiple invocations of the LLVM compilation pipeline with a different set of
|
||||
// flags. Therefore, we only pass command-line flags to LLVM once, before the
|
||||
// first module is compiled.
|
||||
std::once_flag llvm_command_line_options_initialized;
|
||||
absl::once_flag llvm_command_line_options_initialized;
|
||||
|
||||
// This visitor records which HLO instructions should have profiling information
|
||||
// recorded.
|
||||
@ -565,8 +565,8 @@ StatusOr<std::unique_ptr<Executable>> CpuCompiler::RunBackend(
|
||||
auto slow_compile_alarm = SlowCompilationAlarm();
|
||||
|
||||
TF_RET_CHECK(stream_exec != nullptr);
|
||||
std::call_once(llvm_command_line_options_initialized,
|
||||
&llvm_ir::InitializeLLVMCommandLineOptions, module->config());
|
||||
absl::call_once(llvm_command_line_options_initialized,
|
||||
&llvm_ir::InitializeLLVMCommandLineOptions, module->config());
|
||||
|
||||
ModuleHook pre_optimization_ir_hook;
|
||||
ModuleHook post_optimization_ir_hook;
|
||||
@ -702,9 +702,9 @@ CpuCompiler::CompileAheadOfTime(std::unique_ptr<HloModuleGroup> module_group,
|
||||
std::vector<std::unique_ptr<HloModule>> modules =
|
||||
module_group->ConsumeModules();
|
||||
|
||||
std::call_once(llvm_command_line_options_initialized,
|
||||
&llvm_ir::InitializeLLVMCommandLineOptions,
|
||||
modules[0]->config());
|
||||
absl::call_once(llvm_command_line_options_initialized,
|
||||
&llvm_ir::InitializeLLVMCommandLineOptions,
|
||||
modules[0]->config());
|
||||
|
||||
// We can pass just one llvm::TargetOptions when we compile the LLVM module,
|
||||
// so we bail if the configs have conflicting flags. At the moment, the only
|
||||
|
@ -1235,6 +1235,7 @@ cc_library(
|
||||
"//tensorflow/stream_executor:stream_executor_headers",
|
||||
"//tensorflow/stream_executor/cuda:cuda_diagnostics",
|
||||
"//tensorflow/stream_executor/gpu:asm_compiler",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/container:node_hash_map",
|
||||
"@com_google_absl//absl/types:optional",
|
||||
],
|
||||
@ -1465,6 +1466,7 @@ cc_library(
|
||||
"//tensorflow/compiler/xla/service:hlo_module_config",
|
||||
"//tensorflow/core:stream_executor_no_cuda",
|
||||
"//tensorflow/stream_executor:stream_executor_headers",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/strings",
|
||||
],
|
||||
)
|
||||
|
@ -18,6 +18,7 @@ limitations under the License.
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/strings/str_replace.h"
|
||||
#include "tensorflow/compiler/xla/service/gpu/partition_assignment.h"
|
||||
#include "tensorflow/compiler/xla/service/gpu/stream_executor_util.h"
|
||||
@ -585,8 +586,8 @@ static StatusOr<bool> DeviceCompare(se::Stream* stream,
|
||||
if (compiled_ptx_or.ok()) {
|
||||
compiled_ptx = compiled_ptx_or.ConsumeValueOrDie();
|
||||
} else {
|
||||
static std::once_flag ptxas_not_found_logged;
|
||||
std::call_once(ptxas_not_found_logged, [&]() {
|
||||
static absl::once_flag ptxas_not_found_logged;
|
||||
absl::call_once(ptxas_not_found_logged, [&]() {
|
||||
LOG(WARNING)
|
||||
<< compiled_ptx_or.status().ToString()
|
||||
<< "\nRelying on driver to perform ptx compilation. "
|
||||
|
@ -19,7 +19,6 @@ limitations under the License.
|
||||
|
||||
#include <atomic>
|
||||
#include <functional>
|
||||
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
|
||||
#include <utility>
|
||||
|
||||
#include "absl/memory/memory.h"
|
||||
|
@ -35,6 +35,7 @@ cc_library(
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:lib_internal",
|
||||
"//tensorflow/core/profiler/lib:traceme",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@com_google_absl//absl/strings:str_format",
|
||||
|
@ -21,6 +21,7 @@ limitations under the License.
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
@ -492,8 +493,8 @@ namespace nvptx {
|
||||
StatusOr<string> CompileToPtx(llvm::Module* module, GpuVersion gpu_version,
|
||||
const HloModuleConfig& hlo_module_config,
|
||||
const string& libdevice_dir_path) {
|
||||
static std::once_flag backend_init_flag;
|
||||
std::call_once(backend_init_flag, NVPTXBackendInit, hlo_module_config);
|
||||
static absl::once_flag backend_init_flag;
|
||||
absl::call_once(backend_init_flag, NVPTXBackendInit, hlo_module_config);
|
||||
|
||||
string ptx;
|
||||
std::unique_ptr<llvm::TargetMachine> target_machine;
|
||||
@ -712,8 +713,8 @@ namespace amdgpu {
|
||||
StatusOr<std::vector<uint8>> CompileToHsaco(
|
||||
llvm::Module* module, GpuVersion gpu_version,
|
||||
const HloModuleConfig& hlo_module_config, const string& rocdl_dir_path) {
|
||||
static std::once_flag backend_init_flag;
|
||||
std::call_once(backend_init_flag, AMDGPUBackendInit, hlo_module_config);
|
||||
static absl::once_flag backend_init_flag;
|
||||
absl::call_once(backend_init_flag, AMDGPUBackendInit, hlo_module_config);
|
||||
|
||||
std::vector<uint8> hsaco;
|
||||
std::unique_ptr<llvm::TargetMachine> target_machine;
|
||||
|
@ -19,6 +19,7 @@ limitations under the License.
|
||||
|
||||
#include <fstream>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/compiler/xla/service/algebraic_simplifier.h"
|
||||
#include "tensorflow/compiler/xla/service/dump.h"
|
||||
#include "tensorflow/compiler/xla/service/gpu/cublas_gemm_pad_for_tensor_cores.h"
|
||||
@ -247,8 +248,8 @@ absl::optional<bool> CanShareBufferHint(const HloInstruction* user,
|
||||
//
|
||||
// Only prints a warning the first time it's called.
|
||||
void WarnIfBadDriverJITVersion() {
|
||||
static std::once_flag run_once;
|
||||
std::call_once(run_once, [] {
|
||||
static absl::once_flag run_once;
|
||||
absl::call_once(run_once, [] {
|
||||
auto version_or_status = se::cuda::Diagnostician::FindKernelDriverVersion();
|
||||
if (!version_or_status.ok()) {
|
||||
LOG(WARNING) << "Couldn't read CUDA driver version.";
|
||||
|
@ -16,9 +16,9 @@ limitations under the License.
|
||||
#include "tensorflow/compiler/xla/service/slow_operation_alarm.h"
|
||||
|
||||
#include <list>
|
||||
#include <mutex> // NOLINT (for std::call_once, not std::mutex)
|
||||
|
||||
#include "absl/algorithm/container.h"
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/base/thread_annotations.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/synchronization/mutex.h"
|
||||
@ -29,7 +29,7 @@ namespace {
|
||||
|
||||
absl::Mutex mu(absl::kConstInit);
|
||||
absl::CondVar* ready;
|
||||
std::once_flag init_flag;
|
||||
absl::once_flag init_flag;
|
||||
std::list<SlowOperationAlarm*>* outstanding_alarms ABSL_PT_GUARDED_BY(mu) =
|
||||
nullptr;
|
||||
|
||||
@ -73,7 +73,7 @@ void AlarmLoop() {
|
||||
}
|
||||
|
||||
void ScheduleAlarm(SlowOperationAlarm* alarm) {
|
||||
std::call_once(init_flag, [] {
|
||||
absl::call_once(init_flag, [] {
|
||||
ready = new absl::CondVar();
|
||||
outstanding_alarms = new std::list<SlowOperationAlarm*>();
|
||||
(void)tensorflow::Env::Default()->StartThread(
|
||||
|
@ -2578,6 +2578,7 @@ tf_cuda_library(
|
||||
":lib",
|
||||
":lib_internal",
|
||||
":protos_all_cc",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/algorithm:container",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/strings",
|
||||
|
@ -18,6 +18,7 @@ limitations under the License.
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/common_runtime/bfc_allocator.h"
|
||||
#include "tensorflow/core/common_runtime/pool_allocator.h"
|
||||
#include "tensorflow/core/framework/allocator.h"
|
||||
@ -33,8 +34,8 @@ namespace tensorflow {
|
||||
|
||||
/*static*/ ProcessState* ProcessState::singleton() {
|
||||
static ProcessState* instance = new ProcessState;
|
||||
static std::once_flag f;
|
||||
std::call_once(f, []() {
|
||||
static absl::once_flag f;
|
||||
absl::call_once(f, []() {
|
||||
AllocatorFactoryRegistry::singleton()->process_state_ = instance;
|
||||
});
|
||||
|
||||
|
@ -23,6 +23,7 @@ limitations under the License.
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/framework/allocation_description.pb.h"
|
||||
#include "tensorflow/core/framework/attr_value_util.h"
|
||||
#include "tensorflow/core/framework/device_attributes.pb.h"
|
||||
@ -1226,8 +1227,8 @@ void LoadDynamicKernelsInternal() {
|
||||
void LoadDynamicKernels() {
|
||||
// TODO(gunan): As more features are available, add intelligent kernel
|
||||
// selection, and dropping unsuitable kernel logic here.
|
||||
static std::once_flag dll_loader_flag;
|
||||
std::call_once(dll_loader_flag, LoadDynamicKernelsInternal);
|
||||
static absl::once_flag dll_loader_flag;
|
||||
absl::call_once(dll_loader_flag, LoadDynamicKernelsInternal);
|
||||
}
|
||||
|
||||
void* GlobalKernelRegistry() {
|
||||
|
@ -536,6 +536,7 @@ tf_cuda_library(
|
||||
"//tensorflow/stream_executor/gpu:asm_compiler",
|
||||
"//tensorflow/stream_executor/gpu:redzone_allocator",
|
||||
"@com_google_absl//absl/algorithm:container",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/types:span",
|
||||
],
|
||||
)
|
||||
@ -782,7 +783,7 @@ cc_library(
|
||||
deps = select({
|
||||
":no_mkldnn_contraction_kernel": [":eigen_contraction_kernel_no_mkl"],
|
||||
"//conditions:default": [":eigen_contraction_kernel_with_mkl"],
|
||||
}),
|
||||
}) + ["@com_google_absl//absl/base"],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
@ -801,6 +802,7 @@ cc_library(
|
||||
],
|
||||
}),
|
||||
deps = [
|
||||
"@com_google_absl//absl/base",
|
||||
"//third_party/eigen3",
|
||||
"//tensorflow/core/platform:dynamic_annotations",
|
||||
] + select({
|
||||
@ -820,6 +822,7 @@ cc_library(
|
||||
deps = [
|
||||
"//tensorflow/core/platform:dynamic_annotations",
|
||||
"//third_party/eigen3",
|
||||
"@com_google_absl//absl/base",
|
||||
],
|
||||
)
|
||||
|
||||
@ -1888,6 +1891,7 @@ tf_cc_test(
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
"@com_google_absl//absl/base",
|
||||
],
|
||||
)
|
||||
|
||||
@ -4978,6 +4982,7 @@ cc_library(
|
||||
)
|
||||
|
||||
PARSING_DEPS = [
|
||||
"@com_google_absl//absl/base",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
@ -6868,6 +6873,7 @@ cc_library(
|
||||
"//tensorflow/core:protos_all_cc_impl",
|
||||
"//third_party/eigen3",
|
||||
"//third_party/fft2d:fft2d_headers",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_protobuf//:protobuf",
|
||||
"@fft2d",
|
||||
"@gemmlowp",
|
||||
|
@ -28,7 +28,6 @@ limitations under the License.
|
||||
|
||||
#include <atomic>
|
||||
#include <map>
|
||||
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
|
||||
#include <vector>
|
||||
|
||||
#include "tensorflow/core/framework/allocator.h"
|
||||
|
@ -17,6 +17,8 @@ limitations under the License.
|
||||
|
||||
#include <mutex> // NOLINT(build/c++11)
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
|
||||
// We need a pair of compile time and runtime flags to disable compilation of
|
||||
// custom contraction kernels for unsupported architectures (e.g. Android,
|
||||
// iOS, ARM and PPC CPUs, etc...), and to be able to fallback on default Eigen
|
||||
@ -42,8 +44,8 @@ EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE bool UseCustomContractionKernels() {
|
||||
// This subroutine should not be used in GPU. In case it is, a custom kernel
|
||||
// should always be used
|
||||
#if !defined __NVCC__ && !defined __HIP_DEVICE_COMPILE__
|
||||
static std::once_flag initialized;
|
||||
std::call_once(initialized, [&] {
|
||||
static absl::once_flag initialized;
|
||||
absl::call_once(initialized, [&] {
|
||||
char* flag = std::getenv("TENSORFLOW_USE_CUSTOM_CONTRACTION_KERNEL");
|
||||
if (flag && (strcmp(flag, "false") == 0 || strcmp(flag, "0") == 0)) {
|
||||
use_custom_contraction_kernel = false;
|
||||
|
@ -19,6 +19,7 @@ limitations under the License.
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/common_runtime/metrics.h"
|
||||
#include "tensorflow/core/example/example.pb.h"
|
||||
#include "tensorflow/core/example/feature.pb.h"
|
||||
@ -70,7 +71,7 @@ class ParseExampleOp : public OpKernel {
|
||||
OP_REQUIRES_OK(ctx, GetInputListKeys(ctx, "dense_keys", &dense_keys_t));
|
||||
OP_REQUIRES_OK(ctx, GetInputListKeys(ctx, "sparse_keys", &sparse_keys_t));
|
||||
}
|
||||
std::call_once(flag_, [&dense_keys_t, &sparse_keys_t, &ragged_keys_t]() {
|
||||
absl::call_once(flag_, [&dense_keys_t, &sparse_keys_t, &ragged_keys_t]() {
|
||||
metrics::RecordParseDenseFeature(dense_keys_t.size());
|
||||
metrics::RecordParseSparseFeature(sparse_keys_t.size());
|
||||
metrics::RecordParseRaggedFeature(ragged_keys_t.size());
|
||||
@ -284,7 +285,7 @@ class ParseExampleOp : public OpKernel {
|
||||
|
||||
ParseExampleAttrs attrs_;
|
||||
int op_version_;
|
||||
std::once_flag flag_;
|
||||
absl::once_flag flag_;
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("ParseExample").Device(DEVICE_CPU),
|
||||
@ -434,7 +435,7 @@ class ParseSequenceExampleOp : public OpKernel {
|
||||
&feature_list_sparse_keys));
|
||||
OP_REQUIRES_OK(ctx, ctx->input("feature_list_ragged_keys",
|
||||
&feature_list_ragged_keys));
|
||||
std::call_once(flag_, [&]() {
|
||||
absl::call_once(flag_, [&]() {
|
||||
metrics::RecordParseDenseFeature(
|
||||
context_dense_keys->NumElements() +
|
||||
feature_list_dense_keys->NumElements());
|
||||
@ -707,7 +708,7 @@ class ParseSequenceExampleOp : public OpKernel {
|
||||
|
||||
ParseSequenceExampleAttrs attrs_;
|
||||
int op_version_;
|
||||
std::once_flag flag_;
|
||||
absl::once_flag flag_;
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("ParseSequenceExample").Device(DEVICE_CPU),
|
||||
@ -753,7 +754,7 @@ class ParseSingleSequenceExampleOp : public OpKernel {
|
||||
attrs_.num_feature_list_dense);
|
||||
std::vector<string> feature_list_sparse_keys_t(
|
||||
attrs_.num_feature_list_sparse);
|
||||
std::call_once(
|
||||
absl::call_once(
|
||||
flag_, [&context_dense_keys_t, &context_sparse_keys_t,
|
||||
&feature_list_dense_keys_t, &feature_list_sparse_keys_t]() {
|
||||
metrics::RecordParseDenseFeature(context_dense_keys_t.size() +
|
||||
@ -1129,7 +1130,7 @@ class ParseSingleSequenceExampleOp : public OpKernel {
|
||||
|
||||
protected:
|
||||
ParseSingleSequenceExampleAttrs attrs_;
|
||||
std::once_flag flag_;
|
||||
absl::once_flag flag_;
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("ParseSingleSequenceExample").Device(DEVICE_CPU),
|
||||
|
@ -15,6 +15,7 @@ limitations under the License.
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h"
|
||||
#include "tensorflow/core/example/example.pb.h"
|
||||
#include "tensorflow/core/example/feature.pb.h"
|
||||
@ -82,11 +83,11 @@ template <typename T>
|
||||
struct ExampleStore {
|
||||
private:
|
||||
static ExampleTensorMap serialized_example;
|
||||
static std::once_flag flags_init;
|
||||
static absl::once_flag flags_init;
|
||||
|
||||
public:
|
||||
static ExampleTensorMap& GetSerializedExample() {
|
||||
std::call_once(flags_init, [] {
|
||||
absl::call_once(flags_init, [] {
|
||||
AddExample(&serialized_example, 10, 1, 1);
|
||||
AddExample(&serialized_example, 100, 1, 1);
|
||||
AddExample(&serialized_example, 1000, 1, 1);
|
||||
@ -133,7 +134,7 @@ struct ExampleStore {
|
||||
template <typename T>
|
||||
ExampleTensorMap ExampleStore<T>::serialized_example;
|
||||
template <typename T>
|
||||
std::once_flag ExampleStore<T>::flags_init;
|
||||
absl::once_flag ExampleStore<T>::flags_init;
|
||||
|
||||
template struct ExampleStore<BytesFiller>;
|
||||
template struct ExampleStore<Int64Filler>;
|
||||
|
@ -21,6 +21,7 @@ limitations under the License.
|
||||
|
||||
#include "google/protobuf/any.pb.h"
|
||||
#include "absl/algorithm/container.h"
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/platform/logger.h"
|
||||
#include "tensorflow/core/protobuf/autotuning.pb.h"
|
||||
#include "tensorflow/core/protobuf/conv_autotuning.pb.h"
|
||||
@ -42,8 +43,8 @@ se::DeviceMemoryBase WrapRedzoneBestEffort(se::RedzoneAllocator* rz_allocator,
|
||||
}
|
||||
auto output_rz_or = rz_allocator->AllocateBytes(buffer.size());
|
||||
if (!output_rz_or.ok()) {
|
||||
static std::once_flag rz_allocation_failure_logged;
|
||||
std::call_once(rz_allocation_failure_logged, []() {
|
||||
static absl::once_flag rz_allocation_failure_logged;
|
||||
absl::call_once(rz_allocation_failure_logged, []() {
|
||||
LOG(WARNING) << "Failed to allocate memory for convolution redzone "
|
||||
<< "checking; skipping this check. This is benign and only "
|
||||
<< "means that we won't check cudnn for out-of-bounds reads "
|
||||
@ -62,8 +63,8 @@ void CheckRedzones(const se::RedzoneAllocator& rz_allocator,
|
||||
se::port::StatusOr<se::RedzoneAllocator::RedzoneCheckStatus> rz_status =
|
||||
rz_allocator.CheckRedzones();
|
||||
if (!rz_status.ok()) {
|
||||
static std::once_flag failure_logged;
|
||||
std::call_once(failure_logged, [&]() {
|
||||
static absl::once_flag failure_logged;
|
||||
absl::call_once(failure_logged, [&]() {
|
||||
LOG(WARNING) << "Failed to check cudnn convolutions for out-of-bounds "
|
||||
<< "reads and writes with an error message: '"
|
||||
<< rz_status.status().error_message()
|
||||
|
@ -35,6 +35,7 @@ cc_library(
|
||||
"@local_config_rocm//rocm:rccl",
|
||||
"//tensorflow/core:gpu_runtime",
|
||||
]) + if_cuda_or_rocm([
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/container:flat_hash_map",
|
||||
"@com_google_absl//absl/memory",
|
||||
"//tensorflow/core:core_cpu",
|
||||
|
@ -18,6 +18,7 @@ limitations under the License.
|
||||
|
||||
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/lib/core/refcount.h"
|
||||
#include "tensorflow/core/lib/core/threadpool.h"
|
||||
#include "tensorflow/core/platform/env.h"
|
||||
@ -237,8 +238,8 @@ NcclManager* NcclManager::instance() {
|
||||
#if TENSORFLOW_USE_ROCM
|
||||
// singleton does not count against total instances
|
||||
// see comment above in Collective constructor concerning ROCm platform
|
||||
static std::once_flag once;
|
||||
std::call_once(once, [] { --NcclManager::instance_count; });
|
||||
static absl::once_flag once;
|
||||
absl::call_once(once, [] { --NcclManager::instance_count; });
|
||||
#endif
|
||||
return instance;
|
||||
}
|
||||
|
@ -164,6 +164,7 @@ cc_library(
|
||||
":byte_order",
|
||||
":logging",
|
||||
":platform_port",
|
||||
"@com_google_absl//absl/base",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -18,6 +18,7 @@ limitations under the License.
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/platform/byte_order.h"
|
||||
#include "tensorflow/core/platform/cpu_info.h"
|
||||
#include "tensorflow/core/platform/logging.h"
|
||||
@ -91,12 +92,12 @@ class CPUFeatureGuard {
|
||||
|
||||
CPUFeatureGuard g_cpu_feature_guard_singleton;
|
||||
|
||||
std::once_flag g_cpu_feature_guard_warn_once_flag;
|
||||
absl::once_flag g_cpu_feature_guard_warn_once_flag;
|
||||
|
||||
} // namespace
|
||||
|
||||
void InfoAboutUnusedCPUFeatures() {
|
||||
std::call_once(g_cpu_feature_guard_warn_once_flag, [] {
|
||||
absl::call_once(g_cpu_feature_guard_warn_once_flag, [] {
|
||||
string missing_instructions;
|
||||
#if defined(_MSC_VER) && !defined(__clang__)
|
||||
|
||||
|
@ -14,6 +14,8 @@ limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/core/platform/cpu_info.h"
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/platform/logging.h"
|
||||
#include "tensorflow/core/platform/platform.h"
|
||||
#include "tensorflow/core/platform/types.h"
|
||||
@ -297,12 +299,12 @@ class CPUIDInfo {
|
||||
int model_num_;
|
||||
};
|
||||
|
||||
std::once_flag cpuid_once_flag;
|
||||
absl::once_flag cpuid_once_flag;
|
||||
|
||||
void InitCPUIDInfo() {
|
||||
// This ensures that CPUIDInfo::Initialize() is called exactly
|
||||
// once regardless of how many threads concurrently call us
|
||||
std::call_once(cpuid_once_flag, CPUIDInfo::Initialize);
|
||||
absl::call_once(cpuid_once_flag, CPUIDInfo::Initialize);
|
||||
}
|
||||
|
||||
#endif // PLATFORM_IS_X86
|
||||
|
@ -23,6 +23,7 @@ limitations under the License.
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "tensorflow/core/platform/logging.h"
|
||||
#include "tensorflow/core/platform/profile_utils/android_armv7a_cpu_utils_helper.h"
|
||||
|
||||
@ -134,8 +135,8 @@ static ICpuUtilsHelper* cpu_utils_helper_instance_ = nullptr;
|
||||
}
|
||||
|
||||
/* static */ ICpuUtilsHelper& CpuUtils::GetCpuUtilsHelperSingletonInstance() {
|
||||
static std::once_flag flag;
|
||||
std::call_once(flag, []() {
|
||||
static absl::once_flag flag;
|
||||
absl::call_once(flag, []() {
|
||||
if (cpu_utils_helper_instance_ != nullptr) {
|
||||
LOG(FATAL) << "cpu_utils_helper_instance_ is already instantiated.";
|
||||
}
|
||||
|
@ -63,6 +63,7 @@ cc_library(
|
||||
"//tensorflow/stream_executor/platform",
|
||||
],
|
||||
) + tf_additional_cuda_platform_deps() + [
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/base:core_headers",
|
||||
"@com_google_absl//absl/memory",
|
||||
"@com_google_absl//absl/strings",
|
||||
|
@ -15,6 +15,7 @@ limitations under the License.
|
||||
|
||||
#include "tensorflow/stream_executor/cuda/cuda_platform.h"
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/base/const_init.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/strings/str_cat.h"
|
||||
@ -76,8 +77,8 @@ CudaPlatform::~CudaPlatform() {}
|
||||
void CudaPlatform::InspectNumaNodes() {
|
||||
// To get NUMA node information, we need to create all executors, so we can
|
||||
// examine their device descriptions to see their bus assignments.
|
||||
static std::once_flag once;
|
||||
std::call_once(once, [&] {
|
||||
static absl::once_flag once;
|
||||
absl::call_once(once, [&] {
|
||||
StreamExecutorConfig config;
|
||||
for (int i = 0; i < VisibleDeviceCount(); i++) {
|
||||
config.ordinal = i;
|
||||
|
@ -237,6 +237,7 @@ cc_library(
|
||||
],
|
||||
deps = if_gpu_is_configured([
|
||||
"asm_compiler",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/container:fixed_array",
|
||||
"@com_google_absl//absl/strings:str_format",
|
||||
"@com_google_absl//absl/types:optional",
|
||||
|
@ -15,6 +15,7 @@ limitations under the License.
|
||||
|
||||
#include "tensorflow/stream_executor/gpu/redzone_allocator.h"
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/container/fixed_array.h"
|
||||
#include "absl/strings/str_format.h"
|
||||
#include "absl/types/optional.h"
|
||||
@ -307,8 +308,8 @@ port::StatusOr<RedzoneCheckStatus> RedzoneAllocator::CheckRedzones() const {
|
||||
if (compiled_ptx_or.ok()) {
|
||||
compiled_ptx = compiled_ptx_or.ValueOrDie();
|
||||
} else {
|
||||
static std::once_flag ptxas_not_found_logged;
|
||||
std::call_once(ptxas_not_found_logged, [&]() {
|
||||
static absl::once_flag ptxas_not_found_logged;
|
||||
absl::call_once(ptxas_not_found_logged, [&]() {
|
||||
LOG(WARNING) << compiled_ptx_or.status().ToString()
|
||||
<< "\nRelying on driver to perform ptx compilation. "
|
||||
<< "\nModify $PATH to customize ptxas location."
|
||||
|
@ -136,6 +136,7 @@ cc_library(
|
||||
":rocm_driver",
|
||||
":rocm_gpu_executor",
|
||||
":rocm_platform_id",
|
||||
"@com_google_absl//absl/base",
|
||||
"@com_google_absl//absl/memory",
|
||||
"//tensorflow/stream_executor", # buildcleaner: keep
|
||||
"//tensorflow/stream_executor:executor_cache",
|
||||
|
@ -15,6 +15,7 @@ limitations under the License.
|
||||
|
||||
#include "tensorflow/stream_executor/rocm/rocm_platform.h"
|
||||
|
||||
#include "absl/base/call_once.h"
|
||||
#include "absl/memory/memory.h"
|
||||
#include "absl/strings/str_format.h"
|
||||
#include "tensorflow/stream_executor/gpu/gpu_driver.h"
|
||||
@ -38,8 +39,8 @@ ROCmPlatform::~ROCmPlatform() {}
|
||||
void ROCmPlatform::InspectNumaNodes() {
|
||||
// To get NUMA node information, we need to create all executors, so we can
|
||||
// examine their device descriptions to see their bus assignments.
|
||||
std::once_flag once;
|
||||
std::call_once(once, [&] {
|
||||
absl::once_flag once;
|
||||
absl::call_once(once, [&] {
|
||||
StreamExecutorConfig config;
|
||||
for (int i = 0; i < VisibleDeviceCount(); i++) {
|
||||
config.ordinal = i;
|
||||
|
Loading…
Reference in New Issue
Block a user