Do not capture device from outer stack in a func graph when using distribution strategies in eager mode.
PiperOrigin-RevId: 315224550 Change-Id: I92e5a3ddea86e2365758ff4bf1b4f6a03946b1e4
This commit is contained in:
parent
f65efd739c
commit
9b37e09994
|
@ -1791,3 +1791,19 @@ cuda_py_test(
|
|||
"@absl_py//absl/testing:parameterized",
|
||||
],
|
||||
)
|
||||
|
||||
distribute_py_test(
|
||||
name = "tf_function_test",
|
||||
srcs = ["tf_function_test.py"],
|
||||
main = "tf_function_test.py",
|
||||
tags = [
|
||||
"multi_and_single_gpu",
|
||||
],
|
||||
deps = [
|
||||
":combinations",
|
||||
":strategy_combinations",
|
||||
"//tensorflow/python:array_ops",
|
||||
"//tensorflow/python/eager:def_function",
|
||||
"//tensorflow/python/eager:test",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -620,10 +620,8 @@ class StrategyBase(object):
|
|||
if not hasattr(extended, "_retrace_functions_for_each_device"):
|
||||
# pylint: disable=protected-access
|
||||
# `extended._retrace_functions_for_each_device` dictates
|
||||
# 1) whether all the ops created inside function will have devices
|
||||
# inherited from outer stack, and
|
||||
# 2) whether the same function will be retraced when it is called on
|
||||
# different devices.
|
||||
# whether the same function will be retraced when it is called on
|
||||
# different devices.
|
||||
try:
|
||||
extended._retrace_functions_for_each_device = (
|
||||
len(extended.worker_devices) > 1)
|
||||
|
|
|
@ -0,0 +1,131 @@
|
|||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Tests for tf.function + distribution strategies."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
|
||||
from tensorflow.python.compat import v2_compat
|
||||
from tensorflow.python.distribute import combinations
|
||||
from tensorflow.python.distribute import device_util
|
||||
from tensorflow.python.distribute import strategy_combinations
|
||||
from tensorflow.python.distribute import values
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.eager import test
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.ops import variables
|
||||
|
||||
|
||||
class TFFunctionTest(test.TestCase, parameterized.TestCase):
|
||||
|
||||
def setup(self):
|
||||
# Clear the state for every test.
|
||||
def_function.run_functions_eagerly(False)
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=strategy_combinations.all_strategies,
|
||||
mode=["eager"],
|
||||
run_functions_eagerly=[True, False]
|
||||
))
|
||||
def testDefaultDeviceInsideFunctionWithScope(
|
||||
self, distribution, run_functions_eagerly):
|
||||
|
||||
def_function.run_functions_eagerly(run_functions_eagerly)
|
||||
expected_device = (device_util.canonicalize("cpu:0")
|
||||
if run_functions_eagerly else "")
|
||||
with distribution.scope():
|
||||
with ops.device_v2("cpu:0"):
|
||||
@def_function.function
|
||||
def add():
|
||||
one = array_ops.ones([])
|
||||
self.assertEqual(expected_device, one.device)
|
||||
return one + 1
|
||||
|
||||
add()
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=strategy_combinations.all_strategies,
|
||||
mode=["eager"],
|
||||
run_functions_eagerly=[True, False]
|
||||
))
|
||||
def testDefaultDeviceInsideNestedFunctionWithScope(
|
||||
self, distribution, run_functions_eagerly):
|
||||
|
||||
def_function.run_functions_eagerly(run_functions_eagerly)
|
||||
expected_device = (device_util.canonicalize("cpu:0")
|
||||
if run_functions_eagerly else "")
|
||||
with distribution.scope():
|
||||
@def_function.function
|
||||
def foo():
|
||||
with ops.device("cpu:0"):
|
||||
|
||||
@def_function.function
|
||||
def bar():
|
||||
one = array_ops.ones([])
|
||||
self.assertEqual(expected_device, one.device)
|
||||
return one + 1
|
||||
|
||||
bar()
|
||||
|
||||
foo()
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=strategy_combinations.all_strategies,
|
||||
mode=["eager"],
|
||||
run_functions_eagerly=[True, False]
|
||||
))
|
||||
def testReadVariableInsideFunction(self, distribution, run_functions_eagerly):
|
||||
|
||||
# Get devices on which variables will be placed. Default strategy does not
|
||||
# define this, so assume cpu:0 in that case.
|
||||
try:
|
||||
devices = distribution.extended.parameter_devices
|
||||
except RuntimeError:
|
||||
devices = ["cpu:0"]
|
||||
|
||||
with distribution.scope():
|
||||
v = variables.Variable(0.)
|
||||
if isinstance(v, values.DistributedVariable):
|
||||
for i in range(len(devices)):
|
||||
# NOTE: Assigning manually to component variables so we can test
|
||||
# different values on different devices. Using .assign on the
|
||||
# mirrored variable itself will lead to a synchronization which
|
||||
# will prohibit testing different values.
|
||||
replica_variable = v._values[i]
|
||||
replica_variable.assign(math_ops.cast(i, dtypes.float32))
|
||||
|
||||
@def_function.function
|
||||
def read():
|
||||
return v.read_value()
|
||||
|
||||
for i, d in enumerate(devices):
|
||||
with ops.device(d):
|
||||
# Verify that the value from each device is read, when in that device
|
||||
# scope.
|
||||
self.assertEqual(math_ops.cast(i, dtypes.float32), read())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
v2_compat.enable_v2_behavior()
|
||||
test.main()
|
|
@ -365,35 +365,33 @@ class FuncGraph(ops.Graph):
|
|||
@tf_contextlib.contextmanager
|
||||
def inner_cm():
|
||||
"""Context manager for copying distribute.Strategy scope information."""
|
||||
graph = ops.get_default_graph()
|
||||
# pylint: disable=protected-access
|
||||
# TODO(b/112906995, nareshmodi): distribution strategy depends on
|
||||
# inheriting this stack from the default graph even in eager mode. Maybe
|
||||
# it should be part of the eager context? This would also allow us to
|
||||
# remove a get_default_graph() call from the function cache lookup.
|
||||
graph = ops.get_default_graph()
|
||||
old_strategy_stack = self._distribution_strategy_stack
|
||||
self._distribution_strategy_stack = list(
|
||||
graph._distribution_strategy_stack)
|
||||
uses_distribution_strategy = (
|
||||
self._distribution_strategy_stack and
|
||||
self._distribution_strategy_stack[-1].strategy.extended
|
||||
._retrace_functions_for_each_device)
|
||||
|
||||
# We ignore device placements from any outer scopes while tracing the
|
||||
# function when possible, to avoid hard-coding them in the function
|
||||
# graph. "Default" placements come from the PartitionedCallOp's placement,
|
||||
# so that the same trace of the Python function may be placed on several
|
||||
# different devices and saved functions may be placed on new devices when
|
||||
# restored.
|
||||
# However, we need to preserve the outer device stack in the following
|
||||
# cases in non eager context:
|
||||
# 1. device stack is callable
|
||||
# 2. When using distribution strategy with legacy graph mode.
|
||||
old_device_stack = self._device_function_stack
|
||||
if context.executing_eagerly():
|
||||
if uses_distribution_strategy:
|
||||
self._device_function_stack = self._device_function_stack.copy()
|
||||
self._add_device_to_stack(context.context().device_name)
|
||||
else:
|
||||
if (uses_distribution_strategy or
|
||||
device_stack_has_callable(graph._device_function_stack)):
|
||||
# Hard-code devices from device functions in the function body
|
||||
self._device_function_stack = graph._device_function_stack.copy()
|
||||
if (not context.executing_eagerly() and
|
||||
(device_stack_has_callable(graph._device_function_stack) or
|
||||
(self._distribution_strategy_stack and
|
||||
not ops.executing_eagerly_outside_functions()))):
|
||||
# Hard-code devices from device functions in the function body
|
||||
self._device_function_stack = graph._device_function_stack.copy()
|
||||
|
||||
old_creator_stack = self._variable_creator_stack
|
||||
self._variable_creator_stack = graph._variable_creator_stack
|
||||
|
|
Loading…
Reference in New Issue