Improve recurrent layers Call API mask documentation
This commit is contained in:
parent
a7eb0f4531
commit
9a74ca8405
@ -274,7 +274,9 @@ class RNN(Layer):
|
||||
Call arguments:
|
||||
inputs: Input tensor.
|
||||
mask: Binary tensor of shape `[batch_size, timesteps]` indicating whether
|
||||
a given timestep should be masked.
|
||||
a given timestep should be masked. An individual `True` entry indicates
|
||||
that the corresponding timestep should be utilized, while a `False`
|
||||
entry indicates that the corresponding timestep should be ignored.
|
||||
training: Python boolean indicating whether the layer should behave in
|
||||
training mode or in inference mode. This argument is passed to the cell
|
||||
when calling it. This is for use with cells that use dropout.
|
||||
@ -1491,7 +1493,9 @@ class SimpleRNN(RNN):
|
||||
Call arguments:
|
||||
inputs: A 3D tensor, with shape `[batch, timesteps, feature]`.
|
||||
mask: Binary tensor of shape `[batch, timesteps]` indicating whether
|
||||
a given timestep should be masked.
|
||||
a given timestep should be masked. An individual `True` entry indicates
|
||||
that the corresponding timestep should be utilized, while a `False` entry
|
||||
indicates that the corresponding timestep should be ignored.
|
||||
training: Python boolean indicating whether the layer should behave in
|
||||
training mode or in inference mode. This argument is passed to the cell
|
||||
when calling it. This is only relevant if `dropout` or
|
||||
@ -2036,7 +2040,9 @@ class GRU(RNN):
|
||||
Call arguments:
|
||||
inputs: A 3D tensor.
|
||||
mask: Binary tensor of shape `(samples, timesteps)` indicating whether
|
||||
a given timestep should be masked.
|
||||
a given timestep should be masked. An individual `True` entry indicates
|
||||
that the corresponding timestep should be utilized, while a `False`
|
||||
entry indicates that the corresponding timestep should be ignored.
|
||||
training: Python boolean indicating whether the layer should behave in
|
||||
training mode or in inference mode. This argument is passed to the cell
|
||||
when calling it. This is only relevant if `dropout` or
|
||||
@ -2710,7 +2716,9 @@ class LSTM(RNN):
|
||||
Call arguments:
|
||||
inputs: A 3D tensor.
|
||||
mask: Binary tensor of shape `(samples, timesteps)` indicating whether
|
||||
a given timestep should be masked.
|
||||
a given timestep should be masked. An individual `True` entry indicates
|
||||
that the corresponding timestep should be utilized, while a `False`
|
||||
entry indicates that the corresponding timestep should be ignored.
|
||||
training: Python boolean indicating whether the layer should behave in
|
||||
training mode or in inference mode. This argument is passed to the cell
|
||||
when calling it. This is only relevant if `dropout` or
|
||||
|
@ -335,6 +335,9 @@ class GRU(recurrent.DropoutRNNCellMixin, recurrent.GRU):
|
||||
inputs: A 3D tensor, with shape `[batch, timesteps, feature]`.
|
||||
mask: Binary tensor of shape `[samples, timesteps]` indicating whether
|
||||
a given timestep should be masked (optional, defaults to `None`).
|
||||
An individual `True` entry indicates that the corresponding timestep
|
||||
should be utilized, while a `False` entry indicates that the
|
||||
corresponding timestep should be ignored.
|
||||
training: Python boolean indicating whether the layer should behave in
|
||||
training mode or in inference mode. This argument is passed to the cell
|
||||
when calling it. This is only relevant if `dropout` or
|
||||
@ -571,7 +574,9 @@ def standard_gru(inputs, init_h, kernel, recurrent_kernel, bias, mask,
|
||||
bias: Weights for cell kernel bias and recurrent bias. The bias contains the
|
||||
combined input_bias and recurrent_bias.
|
||||
mask: Binary tensor of shape `(samples, timesteps)` indicating whether
|
||||
a given timestep should be masked.
|
||||
a given timestep should be masked. An individual `True` entry indicates
|
||||
that the corresponding timestep should be utilized, while a `False` entry
|
||||
indicates that the corresponding timestep should be ignored.
|
||||
time_major: Boolean, whether the inputs are in the format of
|
||||
[time, batch, feature] or [batch, time, feature].
|
||||
go_backwards: Boolean (default False). If True, process the input sequence
|
||||
@ -741,6 +746,9 @@ def gru_with_backend_selection(inputs, init_h, kernel, recurrent_kernel, bias,
|
||||
bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias
|
||||
is used in this case.
|
||||
mask: Boolean tensor for mask out the steps within sequence.
|
||||
An individual `True` entry indicates that the corresponding timestep
|
||||
should be utilized, while a `False` entry indicates that the corresponding
|
||||
timestep should be ignored.
|
||||
time_major: Boolean, whether the inputs are in the format of
|
||||
[time, batch, feature] or [batch, time, feature].
|
||||
go_backwards: Boolean (default False). If True, process the input sequence
|
||||
@ -1063,6 +1071,9 @@ class LSTM(recurrent.DropoutRNNCellMixin, recurrent.LSTM):
|
||||
inputs: A 3D tensor with shape `[batch, timesteps, feature]`.
|
||||
mask: Binary tensor of shape `[batch, timesteps]` indicating whether
|
||||
a given timestep should be masked (optional, defaults to `None`).
|
||||
An individual `True` entry indicates that the corresponding timestep
|
||||
should be utilized, while a `False` entry indicates that the corresponding
|
||||
timestep should be ignored.
|
||||
training: Python boolean indicating whether the layer should behave in
|
||||
training mode or in inference mode. This argument is passed to the cell
|
||||
when calling it. This is only relevant if `dropout` or
|
||||
@ -1349,6 +1360,9 @@ def standard_lstm(inputs, init_h, init_c, kernel, recurrent_kernel, bias,
|
||||
bias: weights for cell kernel bias and recurrent bias. Only recurrent bias
|
||||
is used in this case.
|
||||
mask: Boolean tensor for mask out the steps within sequence.
|
||||
An individual `True` entry indicates that the corresponding timestep
|
||||
should be utilized, while a `False` entry indicates that the corresponding
|
||||
timestep should be ignored.
|
||||
time_major: boolean, whether the inputs are in the format of
|
||||
[time, batch, feature] or [batch, time, feature].
|
||||
go_backwards: Boolean (default False). If True, process the input sequence
|
||||
@ -1421,6 +1435,9 @@ def gpu_lstm(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask,
|
||||
bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias
|
||||
is used in this case.
|
||||
mask: Boolean tensor for mask out the steps within sequence.
|
||||
An individual `True` entry indicates that the corresponding timestep
|
||||
should be utilized, while a `False` entry indicates that the corresponding
|
||||
timestep should be ignored.
|
||||
time_major: Boolean, whether the inputs are in the format of [time, batch,
|
||||
feature] or [batch, time, feature].
|
||||
go_backwards: Boolean (default False). If True, process the input sequence
|
||||
@ -1551,6 +1568,9 @@ def lstm_with_backend_selection(inputs, init_h, init_c, kernel,
|
||||
bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias
|
||||
is used in this case.
|
||||
mask: Boolean tensor for mask out the steps within sequence.
|
||||
An individual `True` entry indicates that the corresponding timestep
|
||||
should be utilized, while a `False` entry indicates that the corresponding
|
||||
timestep should be ignored.
|
||||
time_major: Boolean, whether the inputs are in the format of
|
||||
[time, batch, feature] or [batch, time, feature].
|
||||
go_backwards: Boolean (default False). If True, process the input sequence
|
||||
|
Loading…
Reference in New Issue
Block a user