diff --git a/tensorflow/python/training/gradient_descent_test.py b/tensorflow/python/training/gradient_descent_test.py index 2c7756e403f..e1a99bbbcf9 100644 --- a/tensorflow/python/training/gradient_descent_test.py +++ b/tensorflow/python/training/gradient_descent_test.py @@ -24,7 +24,6 @@ from tensorflow.python.eager import function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops -from tensorflow.python.framework import test_util from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops @@ -36,10 +35,10 @@ from tensorflow.python.training import gradient_descent class GradientDescentOptimizerTest(test.TestCase): - @test_util.run_deprecated_v1 def testBasic(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) @@ -60,10 +59,10 @@ class GradientDescentOptimizerTest(test.TestCase): self.evaluate(var1)) self.assertEqual(0, len(optimizer.variables())) - @test_util.run_deprecated_v1 def testBasicResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) @@ -86,10 +85,10 @@ class GradientDescentOptimizerTest(test.TestCase): self.assertAllCloseAccordingToType([3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1)) - @test_util.run_deprecated_v1 def testBasicCallableParams(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) @@ -113,10 +112,10 @@ class GradientDescentOptimizerTest(test.TestCase): self.assertAllCloseAccordingToType([3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1)) - @test_util.run_deprecated_v1 def testMinimizeResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) @@ -140,10 +139,10 @@ class GradientDescentOptimizerTest(test.TestCase): [[1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0]], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - np_grad], self.evaluate(var1)) - @test_util.run_deprecated_v1 def testMinimizeSparseResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) @@ -168,10 +167,10 @@ class GradientDescentOptimizerTest(test.TestCase): [[1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0]], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - np_grad], self.evaluate(var1)) - @test_util.run_deprecated_v1 def testTensorLearningRate(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) @@ -191,10 +190,10 @@ class GradientDescentOptimizerTest(test.TestCase): self.assertAllCloseAccordingToType([3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1)) - @test_util.run_deprecated_v1 def testGradWrtRef(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): opt = gradient_descent.GradientDescentOptimizer(3.0) values = [1.0, 3.0] vars_ = [variables.Variable([v], dtype=dtype) for v in values] @@ -203,10 +202,10 @@ class GradientDescentOptimizerTest(test.TestCase): for grad, _ in grads_and_vars: self.assertAllCloseAccordingToType([1.0], self.evaluate(grad)) - @test_util.run_deprecated_v1 def testWithGlobalStep(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): global_step = variables.Variable(0, trainable=False) var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) @@ -227,10 +226,10 @@ class GradientDescentOptimizerTest(test.TestCase): self.evaluate(var1)) self.assertAllCloseAccordingToType(1, self.evaluate(global_step)) - @test_util.run_deprecated_v1 def testSparseBasic(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: - with self.cached_session(): + # train.GradientDescentOptimizer is V1 only API. + with ops.Graph().as_default(), self.cached_session(): var0 = variables.Variable([[1.0], [2.0]], dtype=dtype) var1 = variables.Variable([[3.0], [4.0]], dtype=dtype) grads0 = ops.IndexedSlices(