Add/fix copyright and fix format for the test script and other files.

This commit is contained in:
gracehoney 2018-01-31 22:35:45 -08:00
parent d074556997
commit 9884a21214
3 changed files with 61 additions and 44 deletions

View File

@ -1,53 +1,70 @@
# Script to test TF-TensorRT integration # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Script to test TF-TensorRT integration."""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import tensorflow as tf import tensorflow as tf
import tensorflow.contrib.tensorrt as trt import tensorflow.contrib.tensorrt as trt
import numpy as np import numpy as np
def getSimpleGraphDef():
'''
Create a simple graph and return its graph_def
'''
g=tf.Graph()
with g.as_default():
A=tf.placeholder(dtype=tf.float32,shape=(None,24,24,2),name="input")
e=tf.constant([ [[[ 1., 0.5, 4., 6., 0.5, 1. ],
[ 1., 0.5, 1., 1., 0.5, 1. ]]] ],
name="weights",dtype=tf.float32)
conv=tf.nn.conv2d(input=A,filter=e,strides=[1,2,2,1],padding="SAME",name="conv")
b=tf.constant([ 4., 1.5, 2., 3., 5., 7. ],
name="bias",dtype=tf.float32)
t=tf.nn.bias_add(conv,b,name="biasAdd")
relu=tf.nn.relu(t,"relu")
idty=tf.identity(relu,"ID")
v=tf.nn.max_pool(idty,[1,2,2,1],[1,2,2,1],"VALID",name="max_pool")
out = tf.squeeze(v,name="output")
return g.as_graph_def()
def runGraph(gdef,dumm_inp): def getSimpleGraphDef():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.50) """Create a simple graph and return its graph_def"""
tf.reset_default_graph() g = tf.Graph()
g=tf.Graph() with g.as_default():
with g.as_default(): A = tf.placeholder(dtype=tf.float32, shape=(None, 24, 24, 2), name="input")
inp,out=tf.import_graph_def(graph_def=gdef, e = tf.constant(
return_elements=["input","output"]) [[[[1., 0.5, 4., 6., 0.5, 1.], [1., 0.5, 1., 1., 0.5, 1.]]]],
inp=inp.outputs[0] name="weights",
out=out.outputs[0] dtype=tf.float32)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options), conv = tf.nn.conv2d(
graph=g) as sess: input=A, filter=e, strides=[1, 2, 2, 1], padding="SAME", name="conv")
val=sess.run(out,{inp:dumm_inp}) b = tf.constant([4., 1.5, 2., 3., 5., 7.], name="bias", dtype=tf.float32)
return val t = tf.nn.bias_add(conv, b, name="biasAdd")
if "__main__" in __name__: relu = tf.nn.relu(t, "relu")
inpDims=(100,24,24,2) idty = tf.identity(relu, "ID")
dummy_input=np.random.random_sample(inpDims) v = tf.nn.max_pool(
gdef=getSimpleGraphDef() #get graphdef idty, [1, 2, 2, 1], [1, 2, 2, 1], "VALID", name="max_pool")
trt_graph=trt.CreateInferenceGraph(gdef,["output"],inpDims[0]) # get optimized graph out = tf.squeeze(v, name="output")
o1=runGraph(gdef,dummy_input) return g.as_graph_def()
o2=runGraph(trt_graph,dummy_input)
assert(np.array_equal(o1,o2))
def runGraph(gdef, dumm_inp):
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.50)
tf.reset_default_graph()
g = tf.Graph()
with g.as_default():
inp, out = tf.import_graph_def(
graph_def=gdef, return_elements=["input", "output"])
inp = inp.outputs[0]
out = out.outputs[0]
with tf.Session(
config=tf.ConfigProto(gpu_options=gpu_options), graph=g) as sess:
val = sess.run(out, {inp: dumm_inp})
return val
if "__main__" in __name__:
inpDims = (100, 24, 24, 2)
dummy_input = np.random.random_sample(inpDims)
gdef = getSimpleGraphDef()
trt_graph = trt.CreateInferenceGraph(gdef, ["output"],
inpDims[0]) # Get optimized graph
o1 = runGraph(gdef, dummy_input)
o2 = runGraph(trt_graph, dummy_input)
assert (np.array_equal(o1, o2))

View File

@ -1,4 +1,4 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.

View File

@ -188,7 +188,7 @@ Copyright 2018 The TensorFlow Authors. All rights reserved.
same "printed page" as the copyright notice for easier same "printed page" as the copyright notice for easier
identification within third-party archives. identification within third-party archives.
Copyright 2015, The TensorFlow Authors. Copyright 2018, The TensorFlow Authors.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.