Move keras related eager memory test to keras

PiperOrigin-RevId: 305504849
Change-Id: If783553d443ad4c900eebbb72970ea582cf801a5
This commit is contained in:
Scott Zhu 2020-04-08 10:27:04 -07:00 committed by TensorFlower Gardener
parent e8a98c86ab
commit 97d5010a8f
4 changed files with 105 additions and 43 deletions
tensorflow/python
eager/memory_tests
keras/tests

View File

@ -34,7 +34,6 @@ cuda_py_test(
"//tensorflow/python:framework_test_lib",
"//tensorflow/python/eager:backprop",
"//tensorflow/python/eager:test",
"//tensorflow/python/keras",
"@six_archive//:six",
],
)

View File

@ -24,7 +24,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python import keras
from tensorflow.python.eager import backprop
from tensorflow.python.eager import def_function
from tensorflow.python.eager import test
@ -38,17 +37,6 @@ from tensorflow.python.ops import math_ops
from tensorflow.python.ops.variables import Variable
class SingleLayerNet(keras.Model):
"""Simple keras model used to ensure that there are no leaks."""
def __init__(self):
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
def call(self, x):
return self.fc1(x)
class MemoryTest(test.TestCase):
def testMemoryLeakAnonymousVariable(self):
@ -61,36 +49,6 @@ class MemoryTest(test.TestCase):
memory_test_util.assert_no_leak(f, num_iters=10000)
def testMemoryLeakInSimpleModelForwardOnly(self):
if not memory_test_util.memory_profiler_is_available():
self.skipTest("memory_profiler required to run this test")
inputs = array_ops.zeros([32, 100], dtypes.float32)
net = SingleLayerNet()
def f():
with backprop.GradientTape():
net(inputs)
memory_test_util.assert_no_leak(f)
def testMemoryLeakInSimpleModelForwardAndBackward(self):
if not memory_test_util.memory_profiler_is_available():
self.skipTest("memory_profiler required to run this test")
inputs = array_ops.zeros([32, 100], dtypes.float32)
net = SingleLayerNet()
def f():
with backprop.GradientTape() as tape:
result = net(inputs)
tape.gradient(result, net.variables)
del tape
memory_test_util.assert_no_leak(f)
def testMemoryLeakInFunction(self):
if not memory_test_util.memory_profiler_is_available():
self.skipTest("memory_profiler required to run this test")

View File

@ -2,6 +2,7 @@
# Contains Keras test utils and integration tests.
load("//tensorflow:tensorflow.bzl", "tf_py_test")
load("//tensorflow:tensorflow.bzl", "cuda_py_test")
package(
default_visibility = [
@ -128,6 +129,30 @@ tf_py_test(
],
)
cuda_py_test(
name = "memory_test",
size = "medium",
srcs = ["memory_test.py"],
tags = [
"manual",
"no_oss",
"notap", #TODO(b/140640597): this test is flaky at the moment
"optonly", # The test is too slow in non-opt mode
],
# TODO(b/140065350): Re-enable
xla_enable_strict_auto_jit = False,
deps = [
"//tensorflow/python:array_ops",
"//tensorflow/python:client_testlib",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python/eager:backprop",
"//tensorflow/python/eager:test",
"//tensorflow/python/eager/memory_tests:memory_test_util",
"//tensorflow/python/keras",
"@six_archive//:six",
],
)
tf_py_test(
name = "temporal_sample_weights_correctness_test",
srcs = ["temporal_sample_weights_correctness_test.py"],

View File

@ -0,0 +1,80 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for memory leaks in eager execution.
It is possible that this test suite will eventually become flaky due to taking
too long to run (since the tests iterate many times), but for now they are
helpful for finding memory leaks since not all PyObject leaks are found by
introspection (test_util decorators). Please be careful adding new tests here.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python import keras
from tensorflow.python.eager import backprop
from tensorflow.python.eager import test
from tensorflow.python.eager.memory_tests import memory_test_util
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
class SingleLayerNet(keras.Model):
"""Simple keras model used to ensure that there are no leaks."""
def __init__(self):
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
def call(self, x):
return self.fc1(x)
class MemoryTest(test.TestCase):
def testMemoryLeakInSimpleModelForwardOnly(self):
if not memory_test_util.memory_profiler_is_available():
self.skipTest("memory_profiler required to run this test")
inputs = array_ops.zeros([32, 100], dtypes.float32)
net = SingleLayerNet()
def f():
with backprop.GradientTape():
net(inputs)
memory_test_util.assert_no_leak(f)
def testMemoryLeakInSimpleModelForwardAndBackward(self):
if not memory_test_util.memory_profiler_is_available():
self.skipTest("memory_profiler required to run this test")
inputs = array_ops.zeros([32, 100], dtypes.float32)
net = SingleLayerNet()
def f():
with backprop.GradientTape() as tape:
result = net(inputs)
tape.gradient(result, net.variables)
del tape
memory_test_util.assert_no_leak(f)
if __name__ == "__main__":
test.main()