Automated rollback of commit 445a22e8a9

PiperOrigin-RevId: 295048520
Change-Id: I8bca07075d4525f69327460c348017f8400113d2
This commit is contained in:
A. Unique TensorFlower 2020-02-13 18:36:06 -08:00 committed by TensorFlower Gardener
parent a0199a1fef
commit 968fa9794c
5 changed files with 75 additions and 26 deletions

View File

@ -274,6 +274,7 @@ def _process_single_batch(model,
if isinstance(model.optimizer,
loss_scale_optimizer.LossScaleOptimizer):
grads = model.optimizer.get_unscaled_gradients(grads)
grads = model.optimizer._clip_gradients(grads)
model.optimizer.apply_gradients(zip(grads, trainable_weights))
else:
logging.warning('The list of trainable weights is empty. Make sure that'

View File

@ -237,7 +237,12 @@ class CorrectnessTest(keras_parameterized.TestCase):
@keras_parameterized.run_with_all_model_types
@keras_parameterized.run_all_keras_modes
def test_loss_correctness(self):
@parameterized.named_parameters([
('', dict()),
('_clipvalue_inf', {'clipvalue': 999999}),
('_clipnorm_inf', {'clipnorm': 999999}),
])
def test_loss_correctness(self, optimizer_kwargs):
# Test that training loss is the same in eager and graph
# (by comparing it to a reference value in a deterministic case)
layers = [
@ -247,7 +252,7 @@ class CorrectnessTest(keras_parameterized.TestCase):
model = testing_utils.get_model_from_layers(layers, input_shape=(4,))
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=rmsprop.RMSprop(learning_rate=0.001),
optimizer=rmsprop.RMSprop(learning_rate=0.001, **optimizer_kwargs),
run_eagerly=testing_utils.should_run_eagerly(),
experimental_run_tf_function=testing_utils.should_run_tf_function())
x = np.ones((100, 4))
@ -256,6 +261,30 @@ class CorrectnessTest(keras_parameterized.TestCase):
history = model.fit(x, y, epochs=1, batch_size=10)
self.assertAlmostEqual(history.history['loss'][-1], 0.5836, 4)
@keras_parameterized.run_with_all_model_types
@keras_parameterized.run_all_keras_modes
def test_loss_correctness_clipvalue_zero(self):
# Test that training loss is the same in eager and graph
# (by comparing it to a reference value in a deterministic case)
# And confirm that setting clipvalue to zero stops all training
layers = [
keras.layers.Dense(3, activation='relu',
kernel_initializer='ones'),
keras.layers.Dense(2, activation='softmax', kernel_initializer='ones')]
model = testing_utils.get_model_from_layers(layers, input_shape=(4,))
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=rmsprop.RMSprop(learning_rate=0.001, clipvalue=0.0),
run_eagerly=testing_utils.should_run_eagerly(),
experimental_run_tf_function=testing_utils.should_run_tf_function())
x = np.ones((100, 4))
np.random.seed(123)
y = np.random.randint(0, 1, size=(100, 1))
history = model.fit(x, y, epochs=3, batch_size=10)
self.assertAlmostEqual(history.history['loss'][-3], 0.6931, 4)
self.assertAlmostEqual(history.history['loss'][-2], 0.6931, 4)
self.assertAlmostEqual(history.history['loss'][-1], 0.6931, 4)
@keras_parameterized.run_with_all_model_types
@keras_parameterized.run_all_keras_modes
def test_loss_correctness_with_iterator(self):

View File

@ -117,16 +117,19 @@ class LossScaleOptimizer(optimizer_v2.OptimizerV2):
if not isinstance(optimizer, optimizer_v2.OptimizerV2):
raise ValueError('"optimizer" must be an instance of OptimizerV2, but '
'got: %s' % optimizer)
if hasattr(optimizer, 'clipnorm'):
if optimizer.clipnorm is not None:
raise ValueError('LossScaleOptimizer does not support wrapping '
'optimizers with a clipnorm. Optimizer %s has clipnorm '
'%s' % (optimizer, optimizer.clipnorm))
if hasattr(optimizer, 'clipvalue'):
if optimizer.clipvalue is not None:
raise ValueError('LossScaleOptimizer does not support wrapping '
'optimizers with a clipvalue. Optimizer %s has '
'clipvalue %s' % (optimizer, optimizer.clipvalue))
self.clipnorm = None
self.clipvalue = None
self._optimizer = optimizer
self._loss_scale = keras_loss_scale_module.get(loss_scale)
if self._loss_scale is None:

View File

@ -255,7 +255,7 @@ class OptimizerV2(trackable.Trackable):
raise TypeError("Unexpected keyword argument "
"passed to optimizer: " + str(k))
# checks that all keyword arguments are non-negative.
if kwargs[k] < 0:
if kwargs[k] is not None and kwargs[k] < 0:
raise ValueError("Expected {} >= 0, received: {}".format(k, kwargs[k]))
self._use_locking = True
@ -279,10 +279,15 @@ class OptimizerV2(trackable.Trackable):
if decay < 0.:
raise ValueError("decay cannot be less than 0: {}".format(decay))
self._initial_decay = decay
if "clipnorm" in kwargs:
self.clipnorm = kwargs.pop("clipnorm")
if "clipvalue" in kwargs:
self.clipvalue = kwargs.pop("clipvalue")
# Set the gradient clipping properties
self.clipnorm = kwargs.pop("clipnorm", None)
self.clipvalue = kwargs.pop("clipvalue", None)
if ((self.clipnorm is not None or self.clipvalue is not None)
and distribute_ctx.has_strategy()):
raise ValueError("Gradient clipping in the optimizer "
"(by setting clipnorm or clipvalue) is currently "
"unsupported when using a distribution strategy.")
self._hypers_created = False
@ -317,6 +322,25 @@ class OptimizerV2(trackable.Trackable):
return self.apply_gradients(grads_and_vars, name=name)
def _clip_gradients(self, grads):
"""Clip gradients according to the clipnorm and clipvalue attributes."""
if self.clipnorm is not None:
if distribute_ctx.has_strategy():
raise ValueError("Gradient clipping in the optimizer "
"(by setting clipnorm or clipvalue) is currently "
"unsupported when using a distribution strategy.")
grads = [clip_ops.clip_by_norm(g, self.clipnorm) for g in grads]
if self.clipvalue is not None:
if distribute_ctx.has_strategy():
raise ValueError("Gradient clipping in the optimizer "
"(by setting clipnorm or clipvalue) is currently "
"unsupported when using a distribution strategy.")
grads = [
clip_ops.clip_by_value(g, -self.clipvalue, self.clipvalue)
for g in grads
]
return grads
def _compute_gradients(self, loss, var_list, grad_loss=None):
"""Compute gradients of `loss` for the variables in `var_list`.
@ -353,14 +377,7 @@ class OptimizerV2(trackable.Trackable):
var_list = nest.flatten(var_list)
with backend.name_scope(self._name + "/gradients"):
grads = tape.gradient(loss_value, var_list, grad_loss)
if hasattr(self, "clipnorm"):
grads = [clip_ops.clip_by_norm(g, self.clipnorm) for g in grads]
if hasattr(self, "clipvalue"):
grads = [
clip_ops.clip_by_value(g, -self.clipvalue, self.clipvalue)
for g in grads
]
grads = self._clip_gradients(grads)
grads_and_vars = list(zip(grads, var_list))
self._assert_valid_dtypes([
@ -395,13 +412,7 @@ class OptimizerV2(trackable.Trackable):
"gradient defined (i.e. are differentiable). "
"Common ops without gradient: "
"K.argmax, K.round, K.eval.".format(param))
if hasattr(self, "clipnorm"):
grads = [clip_ops.clip_by_norm(g, self.clipnorm) for g in grads]
if hasattr(self, "clipvalue"):
grads = [
clip_ops.clip_by_value(g, -self.clipvalue, self.clipvalue)
for g in grads
]
grads = self._clip_gradients(grads)
return grads
def apply_gradients(self, grads_and_vars, name=None):
@ -704,9 +715,9 @@ class OptimizerV2(trackable.Trackable):
Python dictionary.
"""
config = {"name": self._name}
if hasattr(self, "clipnorm"):
if self.clipnorm is not None:
config["clipnorm"] = self.clipnorm
if hasattr(self, "clipvalue"):
if self.clipvalue is not None:
config["clipvalue"] = self.clipvalue
return config

View File

@ -721,6 +721,11 @@ class TFOptimizer(Optimizer, trackable.Trackable):
self.iterations = iterations
self._track_trackable(self.iterations, name='global_step')
def _clip_gradients(self, grads):
"""Clip gradients according to the clipnorm and clipvalue attributes."""
# TFOptimizer wrapper has no gradient clipping options.
return grads
def apply_gradients(self, grads):
self.optimizer.apply_gradients(grads, global_step=self.iterations)