diff --git a/tensorflow/contrib/layers/python/layers/feature_column_ops_test.py b/tensorflow/contrib/layers/python/layers/feature_column_ops_test.py index d4ce003cdc3..f3134c0d699 100644 --- a/tensorflow/contrib/layers/python/layers/feature_column_ops_test.py +++ b/tensorflow/contrib/layers/python/layers/feature_column_ops_test.py @@ -229,7 +229,7 @@ class TransformerTest(test.TestCase): self.assertEqual(len(output), 1) self.assertIn(keys_sparse, output) with self.test_session(): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertEqual(output[keys_sparse].values.dtype, dtypes.int64) self.assertAllEqual(output[keys_sparse].values.eval(), [1, 2, 0]) self.assertAllEqual(output[keys_sparse].indices.eval(), @@ -247,7 +247,7 @@ class TransformerTest(test.TestCase): output = feature_column_ops._Transformer(features).transform(keys_sparse) with self.test_session(): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() # While the input is a dense Tensor, the output should be a SparseTensor. self.assertIsInstance(output, sparse_tensor.SparseTensor) self.assertEqual(output.dtype, dtypes.int64) @@ -316,7 +316,7 @@ class TransformerTest(test.TestCase): self.assertIn(weighted_ids, output) with self.test_session(): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual(output[weighted_ids][0].dense_shape.eval(), ids_tensor.dense_shape.eval()) self.assertAllEqual(output[weighted_ids][0].indices.eval(), @@ -346,7 +346,7 @@ class TransformerTest(test.TestCase): self.assertEqual(len(output), 1) self.assertIn(vocab_sparse, output) with self.test_session(): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertEqual(output[vocab_sparse].values.dtype, dtypes.int64) self.assertAllEqual(output[vocab_sparse].values.eval(), [1, 2, 0]) self.assertAllEqual(output[vocab_sparse].indices.eval(), @@ -368,7 +368,7 @@ class TransformerTest(test.TestCase): self.assertEqual(len(output), 1) self.assertIn(vocab_sparse, output) with self.test_session(): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertEqual(output[vocab_sparse].values.dtype, dtypes.int64) self.assertAllEqual(output[vocab_sparse].values.eval(), [1, 2, 0, 1]) self.assertAllEqual(output[vocab_sparse].indices.eval(), @@ -392,7 +392,7 @@ class TransformerTest(test.TestCase): self.assertEqual(len(output), 1) self.assertIn(vocab_sparse, output) with self.test_session(): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertEqual(output[vocab_sparse].values.dtype, dtypes.int64) self.assertAllEqual(output[vocab_sparse].values.eval(), [1, 2, 0]) self.assertAllEqual(output[vocab_sparse].indices.eval(), @@ -414,7 +414,7 @@ class TransformerTest(test.TestCase): self.assertEqual(len(output), 1) self.assertIn(vocab_sparse, output) with self.test_session(): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertEqual(output[vocab_sparse].values.dtype, dtypes.int64) self.assertAllEqual(output[vocab_sparse].values.eval(), [1, 2, 0, 1]) self.assertAllEqual(output[vocab_sparse].indices.eval(), @@ -584,7 +584,7 @@ class CreateInputLayersForDNNsTest(test.TestCase): ]) with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual(output.eval().shape, [3, 3 + 4 + 10]) def testRealValuedColumn(self): @@ -681,7 +681,7 @@ class CreateInputLayersForDNNsTest(test.TestCase): [one_hot_column]) with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual([[0, 0, 10., 0], [0, 20., 0, 0], [30., 0, 40., 0]], output.eval()) @@ -699,7 +699,7 @@ class CreateInputLayersForDNNsTest(test.TestCase): with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]], output.eval()) @@ -717,7 +717,7 @@ class CreateInputLayersForDNNsTest(test.TestCase): with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 1, 0]], output.eval()) @@ -751,7 +751,7 @@ class CreateInputLayersForDNNsTest(test.TestCase): [one_hot_sparse]) with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual([3, 10], output.eval().shape) def testEmbeddingColumnSucceedsForDNN(self): @@ -857,7 +857,7 @@ class CreateInputLayersForDNNsTest(test.TestCase): [embeded_sparse]) with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual(output.eval().shape, [2, 10]) def testEmbeddingColumnWithCrossedColumnSucceedsForDNN(self): @@ -908,7 +908,7 @@ class CreateInputLayersForDNNsTest(test.TestCase): with self.assertRaisesRegexp( ValueError, "Error creating input layer for column: ids_weighted_by_weights"): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() feature_column_ops.input_from_feature_columns(features, [weighted_ids]) def testCrossedColumnFailsForDNN(self): @@ -1015,7 +1015,7 @@ class CreateInputLayersForDNNsTest(test.TestCase): [embeded_sparse]) with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() # score: (sum of weights) self.assertAllEqual(output.eval(), [[10.], [50.], [0.]]) @@ -1208,7 +1208,7 @@ class SequenceInputFromFeatureColumnTest(test.TestCase): with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() model_input = sess.run(model_input_tensor) expected_input_shape = np.array([4, 3, 4]) @@ -1242,7 +1242,7 @@ class SequenceInputFromFeatureColumnTest(test.TestCase): with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() model_input = sess.run(model_input_tensor) expected_input_shape = np.array([4, 3, hash_buckets]) @@ -1272,7 +1272,7 @@ class SequenceInputFromFeatureColumnTest(test.TestCase): with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() model_input = sess.run(model_input_tensor) self.assertAllEqual(expected_input_shape, model_input.shape) @@ -1302,7 +1302,7 @@ class SequenceInputFromFeatureColumnTest(test.TestCase): embedding_weights) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() model_input, gradients = sess.run([model_input_tensor, gradient_tensor]) expected_input_shape = [4, 3, embedding_dimension] @@ -1369,7 +1369,7 @@ class SequenceInputFromFeatureColumnTest(test.TestCase): with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() model_input = sess.run(model_input_tensor) expected_input_shape = [ @@ -1437,7 +1437,7 @@ class WeightedSumTest(test.TestCase): features, [weighted_ids], num_outputs=5) with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual(logits.eval().shape, [2, 5]) def testWeightedSparseColumnWithDenseInputTensor(self): @@ -1453,7 +1453,7 @@ class WeightedSumTest(test.TestCase): with self.test_session(): variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual(logits.eval().shape, [2, 5]) def testCrossedColumn(self): @@ -1507,7 +1507,7 @@ class WeightedSumTest(test.TestCase): features, [movies], num_outputs=1)) with self.test_session() as sess: variables_lib.initialize_all_variables().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[movies][0] self.assertEqual(weights.get_shape(), (3, 1)) @@ -1582,7 +1582,7 @@ class WeightedSumTest(test.TestCase): features, [age, language], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllClose(output.eval(), [[0.], [0.]]) @@ -1622,7 +1622,7 @@ class WeightedSumTest(test.TestCase): self.assertEqual(len(variables), 1) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllClose(output.eval(), [[0.], [0.]]) @@ -1686,7 +1686,7 @@ class WeightedSumTest(test.TestCase): features, [weighted_language], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllClose(output.eval(), [[0.], [0.]]) @@ -1714,7 +1714,7 @@ class WeightedSumTest(test.TestCase): features, [language], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() # score: 0.1 + language_weight['hindi'] + language_weight['english'] sess.run(bias.assign([0.1])) @@ -1737,7 +1737,7 @@ class WeightedSumTest(test.TestCase): features, [movies], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[movies][0] self.assertEqual(weights.get_shape(), (15, 1)) @@ -1771,7 +1771,7 @@ class WeightedSumTest(test.TestCase): features, [country_language], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[country_language][0] sess.run(weights.assign(weights + 0.4)) @@ -1795,7 +1795,7 @@ class WeightedSumTest(test.TestCase): features, [language_language], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[language_language][0] sess.run(weights.assign(weights + 0.4)) @@ -1828,7 +1828,7 @@ class WeightedSumTest(test.TestCase): features, [country_language], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[country_language][0] sess.run(weights.assign(weights + 0.4)) @@ -1869,7 +1869,7 @@ class WeightedSumTest(test.TestCase): scope=scope)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertEqual(2, len(column_to_variable[country])) self.assertEqual(3, len(column_to_variable[language])) @@ -1906,7 +1906,7 @@ class WeightedSumTest(test.TestCase): features, [country, age, incomes], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() incomes_weights = column_to_variable[incomes][0] sess.run(incomes_weights.assign([[0.1], [0.2], [0.3]])) @@ -1943,7 +1943,7 @@ class WeightedSumTest(test.TestCase): features, [country, age, height, incomes], num_outputs=5)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() height_weights = column_to_variable[height][0] sess.run( @@ -1973,7 +1973,7 @@ class WeightedSumTest(test.TestCase): features, [bucket], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() sess.run(column_to_variable[bucket][0].assign([[0.1], [0.2], [0.3], [0.4]])) @@ -2001,7 +2001,7 @@ class WeightedSumTest(test.TestCase): features, [bucket, country], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() # dimension = 2, bucket_size = 4, num_classes = 1 sess.run(column_to_variable[bucket][0].assign( @@ -2030,7 +2030,7 @@ class WeightedSumTest(test.TestCase): features, [bucket, country], num_outputs=5)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() # dimension = 2, bucket_size = 4, num_classes = 5 sess.run(column_to_variable[bucket][0].assign( @@ -2066,7 +2066,7 @@ class WeightedSumTest(test.TestCase): features, [country_price], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[country_price][0] sess.run(weights.assign(weights + 0.4)) @@ -2105,7 +2105,7 @@ class WeightedSumTest(test.TestCase): features, [country_language_price], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[country_language_price][0] sess.run(weights.assign(weights + 0.4)) @@ -2129,7 +2129,7 @@ class WeightedSumTest(test.TestCase): features, [product], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() product_weights = column_to_variable[product][0] sess.run(product_weights.assign([[0.1], [0.2], [0.3], [0.4], [0.5]])) self.assertAllClose(output.eval(), [[0.1], [0.5], [0.3]]) @@ -2144,7 +2144,7 @@ class WeightedSumTest(test.TestCase): features, [product], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() product_weights = column_to_variable[product][0] sess.run(product_weights.assign([[0.1], [0.2], [0.3], [0.4], [0.5]])) self.assertAllClose(output.eval(), [[0.1], [0.5], [0.3]]) @@ -2159,7 +2159,7 @@ class WeightedSumTest(test.TestCase): features, [product], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() product_weights = column_to_variable[product][0] sess.run(product_weights.assign([[0.1], [0.2], [0.3], [0.4], [0.5]])) self.assertAllClose(output.eval(), [[0.6], [0.7]]) @@ -2180,7 +2180,7 @@ class WeightedSumTest(test.TestCase): features, [product], num_outputs=1)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() product_weights = column_to_variable[product][0] sess.run(product_weights.assign([[0.1], [0.2], [0.3], [0.4], [0.5]])) self.assertAllClose(output.eval(), [[0.1], [0.5], [0.3]]) @@ -2192,7 +2192,7 @@ class WeightedSumTest(test.TestCase): features, [feature_column.real_valued_column("age")], num_outputs=3) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() sess.run(bias.assign([0.1, 0.2, 0.3])) self.assertAllClose(output.eval(), [[0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3]]) @@ -2206,7 +2206,7 @@ class WeightedSumTest(test.TestCase): features, [column], num_outputs=3)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[column][0] self.assertEqual(weights.get_shape(), (1, 3)) sess.run(weights.assign([[0.01, 0.03, 0.05]])) @@ -2230,7 +2230,7 @@ class WeightedSumTest(test.TestCase): features, [column], num_outputs=3)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[column][0] self.assertEqual(weights.get_shape(), (5, 3)) sess.run( @@ -2256,7 +2256,7 @@ class WeightedSumTest(test.TestCase): features, [column], num_outputs=3)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[column][0] self.assertEqual(weights.get_shape(), (5, 3)) @@ -2296,7 +2296,7 @@ class WeightedSumTest(test.TestCase): features, [column], num_outputs=3)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[column][0] self.assertEqual(weights.get_shape(), (5, 3)) @@ -2325,7 +2325,7 @@ class WeightedSumTest(test.TestCase): features, [column], num_outputs=3)) with self.test_session() as sess: variables_lib.global_variables_initializer().run() - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() weights = column_to_variable[column][0] self.assertEqual(weights.get_shape(), (5, 3)) @@ -2390,7 +2390,7 @@ class ParseExampleTest(test.TestCase): self.assertIn(bucket, output) self.assertIn(wire_cast, output) with self.test_session(): - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual(output[bucket].eval(), [[2, 3, 0]]) self.assertAllEqual(output[wire_cast].indices.eval(), [[0, 0], [0, 1]]) self.assertAllEqual(output[wire_cast].values.eval(), [2, 0]) diff --git a/tensorflow/contrib/learn/python/learn/estimators/dynamic_rnn_estimator_test.py b/tensorflow/contrib/learn/python/learn/estimators/dynamic_rnn_estimator_test.py index 197806606fa..955b57e893f 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/dynamic_rnn_estimator_test.py +++ b/tensorflow/contrib/learn/python/learn/estimators/dynamic_rnn_estimator_test.py @@ -160,7 +160,7 @@ class DynamicRnnEstimatorTest(test.TestCase): self.context_feature_columns) with self.test_session() as sess: sess.run(variables.global_variables_initializer()) - sess.run(data_flow_ops.initialize_all_tables()) + sess.run(data_flow_ops.tables_initializer()) sequence_input_val = sess.run(sequence_input) expected_shape = np.array([ 3, # expected batch size @@ -181,7 +181,7 @@ class DynamicRnnEstimatorTest(test.TestCase): # Obtain values of activations and final state. with session.Session() as sess: sess.run(variables.global_variables_initializer()) - sess.run(data_flow_ops.initialize_all_tables()) + sess.run(data_flow_ops.tables_initializer()) activations, final_state = sess.run([activations_t, final_state_t]) expected_activations_shape = np.array([3, 2, self.NUM_LABEL_COLUMNS]) diff --git a/tensorflow/contrib/learn/python/learn/estimators/estimator.py b/tensorflow/contrib/learn/python/learn/estimators/estimator.py index e3dc27e6460..1d363897228 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/estimator.py +++ b/tensorflow/contrib/learn/python/learn/estimators/estimator.py @@ -1283,7 +1283,7 @@ class Estimator(BaseEstimator): with tf_session.Session('') as session: variables.initialize_local_variables() - data_flow_ops.initialize_all_tables() + data_flow_ops.tables_initializer() saver_for_restore = saver.Saver( variables.global_variables(), sharded=True) @@ -1291,7 +1291,7 @@ class Estimator(BaseEstimator): init_op = control_flow_ops.group( variables.local_variables_initializer(), - data_flow_ops.initialize_all_tables()) + data_flow_ops.tables_initializer()) # Perform the export builder = saved_model_builder.SavedModelBuilder(export_dir) diff --git a/tensorflow/contrib/learn/python/learn/graph_actions.py b/tensorflow/contrib/learn/python/learn/graph_actions.py index 82984d87ed2..45a2dc18469 100644 --- a/tensorflow/contrib/learn/python/learn/graph_actions.py +++ b/tensorflow/contrib/learn/python/learn/graph_actions.py @@ -634,7 +634,7 @@ def _get_local_init_op(): ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [variables.local_variables_initializer(), - data_flow_ops.initialize_all_tables()] + data_flow_ops.tables_initializer()] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) @@ -881,7 +881,7 @@ def run_feeds_iter(output_dict, feed_dicts, restore_checkpoint_path=None): else: session.run(variables.global_variables_initializer()) session.run(variables.local_variables_initializer()) - session.run(data_flow_ops.initialize_all_tables()) + session.run(data_flow_ops.tables_initializer()) coord = coordinator.Coordinator() threads = None try: diff --git a/tensorflow/contrib/learn/python/learn/utils/export.py b/tensorflow/contrib/learn/python/learn/utils/export.py index 0d39d26c3cd..e0452c56a2f 100644 --- a/tensorflow/contrib/learn/python/learn/utils/export.py +++ b/tensorflow/contrib/learn/python/learn/utils/export.py @@ -66,13 +66,13 @@ def _export_graph(graph, saver, checkpoint_path, export_dir, with graph.as_default(): with tf_session.Session('') as session: variables.local_variables_initializer() - data_flow_ops.initialize_all_tables() + data_flow_ops.tables_initializer() saver.restore(session, checkpoint_path) export = exporter.Exporter(saver) export.init(init_op=control_flow_ops.group( variables.local_variables_initializer(), - data_flow_ops.initialize_all_tables()), + data_flow_ops.tables_initializer()), default_graph_signature=default_graph_signature, named_graph_signatures=named_graph_signatures, assets_collection=ops.get_collection( diff --git a/tensorflow/contrib/lookup/lookup_ops.py b/tensorflow/contrib/lookup/lookup_ops.py index d1e53f4a663..5eebe06cf78 100644 --- a/tensorflow/contrib/lookup/lookup_ops.py +++ b/tensorflow/contrib/lookup/lookup_ops.py @@ -795,7 +795,7 @@ def string_to_index_table_from_file(vocabulary_file=None, The bucket ID range is `[vocabulary size, vocabulary size + num_oov_buckets]`. The underlying table must be initialized by calling - `tf.initialize_all_tables.run()` or `table.init.run()` once. + `tf.tables_initializer.run()` or `table.init.run()` once. Sample Usages: @@ -813,7 +813,7 @@ def string_to_index_table_from_file(vocabulary_file=None, vocabulary_file="test.txt", num_oov_buckets=1) ids = table.lookup(features) ... - tf.initialize_all_tables().run() + tf.tables_initializer().run() ids.eval() ==> [0, 1, 3, 2] # where 3 is the out-of-vocabulary bucket ``` @@ -893,7 +893,7 @@ def string_to_index_table_from_tensor(mapping, The bucket ID range is `[mapping size, mapping size + num_oov_buckets]`. The underlying table must be initialized by calling - `tf.initialize_all_tables.run()` or `table.init.run()` once. + `tf.tables_initializer.run()` or `table.init.run()` once. Elements in `mapping` cannot have duplicates, otherwise when executing the table initializer op, it will throw a `FailedPreconditionError`. @@ -907,7 +907,7 @@ def string_to_index_table_from_tensor(mapping, features = tf.constant(["emerson", "lake", "and", "palmer"]) ids = table.lookup(features) ... - tf.initialize_all_tables().run() + tf.tables_initializer().run() ids.eval() ==> [0, 1, 4, 2] ``` @@ -975,7 +975,7 @@ def string_to_index(tensor, mapping, default_value=-1, name=None): will throw a FailedPreconditionError. The underlying table must be initialized by calling - `tf.initialize_all_tables.run()` once. + `tf.tables_initializer.run()` once. For example: @@ -985,7 +985,7 @@ def string_to_index(tensor, mapping, default_value=-1, name=None): ids = tf.contrib.lookup.string_to_index( feats, mapping=mapping_strings, default_value=-1) ... - tf.initialize_all_tables().run() + tf.tables_initializer().run() ids.eval() ==> [0, 1, -1, 2] ``` @@ -1022,7 +1022,7 @@ def index_to_string_table_from_file(vocabulary_file, (an out-of-vocabulary entry) is assigned the `default_value` The underlying table must be initialized by calling - `tf.initialize_all_tables.run()` or `table.init.run()` once. + `tf.tables_initializer.run()` or `table.init.run()` once. Sample Usages: @@ -1040,7 +1040,7 @@ def index_to_string_table_from_file(vocabulary_file, vocabulary_file="test.txt", default_value="UNKNOWN") values = table.lookup(indices) ... - tf.initialize_all_tables().run() + tf.tables_initializer().run() values.eval() ==> ["lake", "UNKNOWN"] ``` @@ -1096,7 +1096,7 @@ def index_to_string_table_from_tensor(mapping, default_value="UNK", name=None): (an out-of-vocabulary entry) is assigned the `default_value` The underlying table must be initialized by calling - `tf.initialize_all_tables.run()` or `table.init.run()` once. + `tf.tables_initializer.run()` or `table.init.run()` once. Elements in `mapping` cannot have duplicates, otherwise when executing the table initializer op, it will throw a `FailedPreconditionError`. @@ -1110,7 +1110,7 @@ def index_to_string_table_from_tensor(mapping, default_value="UNK", name=None): mapping_string, default_value="UNKNOWN") values = table.lookup(indices) ... - tf.initialize_all_tables().run() + tf.tables_initializer().run() values.eval() ==> ["lake", "UNKNOWN"] ``` @@ -1159,7 +1159,7 @@ def index_to_string(tensor, mapping, default_value="UNK", name=None): (an out-of-vocabulary entry) is assigned the `default_value` The underlying table must be initialized by calling - `tf.initialize_all_tables.run()` once. + `tf.tables_initializer.run()` once. For example: @@ -1169,7 +1169,7 @@ def index_to_string(tensor, mapping, default_value="UNK", name=None): values = tf.contrib.lookup.index_to_string( indices, mapping=mapping_string, default_value="UNKNOWN") ... - tf.initialize_all_tables().run() + tf.tables_initializer().run() values.eval() ==> ["lake", "UNKNOWN"] ``` diff --git a/tensorflow/contrib/lookup/lookup_ops_test.py b/tensorflow/contrib/lookup/lookup_ops_test.py index 1ec6a231c8a..15c318b6ef7 100644 --- a/tensorflow/contrib/lookup/lookup_ops_test.py +++ b/tensorflow/contrib/lookup/lookup_ops_test.py @@ -125,7 +125,7 @@ class HashTableOpTest(test.TestCase): table3 = lookup_ops.HashTable( lookup_ops.KeyValueTensorInitializer(keys, values), default_val) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual(3, table1.size().eval()) self.assertAllEqual(3, table2.size().eval()) self.assertAllEqual(3, table3.size().eval()) @@ -1148,7 +1148,7 @@ class StringToIndexTableFromFile(test.TestCase): ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((1, 2, 3), ids.eval()) def test_string_to_index_table_from_file_with_default_value(self): @@ -1160,7 +1160,7 @@ class StringToIndexTableFromFile(test.TestCase): ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((1, 2, default_value), ids.eval()) def test_string_to_index_table_from_file_with_oov_buckets(self): @@ -1172,7 +1172,7 @@ class StringToIndexTableFromFile(test.TestCase): constant_op.constant(["salad", "surgery", "tarkus", "toccata"])) self.assertRaises(errors_impl.OpError, ids.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual( ( 1, # From vocabulary file. @@ -1195,7 +1195,7 @@ class StringToIndexTableFromFile(test.TestCase): ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((1, -1, -1), ids.eval()) self.assertEqual(2, table.size().eval()) @@ -1222,7 +1222,7 @@ class StringToIndexTableFromFile(test.TestCase): ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((1, 2, -1), ids.eval()) self.assertEqual(3, table.size().eval()) @@ -1255,7 +1255,7 @@ class StringToIndexTableFromTensor(test.TestCase): ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((1, 2, 3), ids.eval()) def test_string_to_index_table_from_tensor_with_default_value(self): @@ -1266,7 +1266,7 @@ class StringToIndexTableFromTensor(test.TestCase): ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((1, 2, default_value), ids.eval()) def test_string_to_index_table_from_tensor_with_only_oov_buckets(self): @@ -1301,7 +1301,7 @@ class StringToIndexTest(test.TestCase): indices = lookup_ops.string_to_index(feats, mapping=mapping_strings) self.assertRaises(errors_impl.OpError, indices.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((1, 2, -1), indices.eval()) @@ -1312,7 +1312,7 @@ class StringToIndexTest(test.TestCase): indices = lookup_ops.string_to_index(feats, mapping=mapping_strings) self.assertRaises(errors_impl.OpError, - data_flow_ops.initialize_all_tables().run) + data_flow_ops.tables_initializer().run) def test_string_to_index_with_default_value(self): default_value = -42 @@ -1323,7 +1323,7 @@ class StringToIndexTest(test.TestCase): feats, mapping=mapping_strings, default_value=default_value) self.assertRaises(errors_impl.OpError, indices.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((1, 2, default_value), indices.eval()) @@ -1342,7 +1342,7 @@ class IndexToStringTableFromFileTest(test.TestCase): vocabulary_file=vocabulary_file) features = table.lookup(constant_op.constant([0, 1, 2, 3], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"brain", b"salad", b"surgery", b"UNK"), features.eval()) @@ -1354,7 +1354,7 @@ class IndexToStringTableFromFileTest(test.TestCase): vocabulary_file=vocabulary_file, default_value=default_value) features = table.lookup(constant_op.constant([1, 2, 4], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"salad", b"surgery", default_value), features.eval()) @@ -1368,7 +1368,7 @@ class IndexToStringTableFromFileTest(test.TestCase): default_value=default_value) features = table.lookup(constant_op.constant([1, 2, 4], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"salad", default_value, default_value), features.eval()) @@ -1380,7 +1380,7 @@ class IndexToStringTableFromFileTest(test.TestCase): features = table.lookup(constant_op.constant([1, 2, 4], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) - init = data_flow_ops.initialize_all_tables() + init = data_flow_ops.tables_initializer() self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "Invalid vocab_size", init.run) @@ -1392,7 +1392,7 @@ class IndexToStringTableFromFileTest(test.TestCase): features = table.lookup(constant_op.constant([1, 2, 4], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"salad", b"surgery", b"UNK"), features.eval()) @@ -1407,7 +1407,7 @@ class IndexToStringTableFromTensorTest(test.TestCase): indices = constant_op.constant([0, 1, 2, 3], dtypes.int64) features = table.lookup(indices) self.assertRaises(errors_impl.OpError, features.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"brain", b"salad", b"surgery", b"UNK"), features.eval()) @@ -1419,7 +1419,7 @@ class IndexToStringTableFromTensorTest(test.TestCase): mapping=mapping_strings) indices = constant_op.constant([0, 1, 4], dtypes.int64) features = table.lookup(indices) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"hello", b"hello", b"UNK"), features.eval()) def test_index_to_string_with_default_value(self): @@ -1432,7 +1432,7 @@ class IndexToStringTableFromTensorTest(test.TestCase): features = table.lookup(indices) self.assertRaises(errors_impl.OpError, features.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"salad", b"surgery", default_value), features.eval()) @@ -1446,7 +1446,7 @@ class IndexToStringTest(test.TestCase): feats = lookup_ops.index_to_string(indices, mapping=mapping_strings) self.assertRaises(errors_impl.OpError, feats.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"brain", b"salad", b"surgery", b"UNK"), feats.eval()) @@ -1456,11 +1456,11 @@ class IndexToStringTest(test.TestCase): mapping_strings = constant_op.constant(["hello", "hello"]) indices = constant_op.constant([0, 1, 4], dtypes.int64) feats = lookup_ops.index_to_string(indices, mapping=mapping_strings) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"hello", b"hello", b"UNK"), feats.eval()) self.assertRaises(errors_impl.OpError, - data_flow_ops.initialize_all_tables().run) + data_flow_ops.tables_initializer().run) def test_index_to_string_with_default_value(self): default_value = b"NONE" @@ -1471,7 +1471,7 @@ class IndexToStringTest(test.TestCase): indices, mapping=mapping_strings, default_value=default_value) self.assertRaises(errors_impl.OpError, feats.eval) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() self.assertAllEqual((b"salad", b"surgery", default_value), feats.eval()) @@ -1615,7 +1615,7 @@ class InitializeTableFromFileOpTest(test.TestCase): default_value, shared_name=shared_name) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() input_string = constant_op.constant(["brain", "salad", "tank"]) @@ -1847,7 +1847,7 @@ class IdTableWithHashBucketsTest(test.TestCase): hasher_spec=lookup_ops.StrongHashSpec((1, 2)), name="table2") - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() input_string = constant_op.constant( ["fruit", "brain", "salad", "surgery", "UNK"]) @@ -1933,7 +1933,7 @@ class IdTableWithHashBucketsTest(test.TestCase): default_value2), oov_buckets) - data_flow_ops.initialize_all_tables().run() + data_flow_ops.tables_initializer().run() input_string_1 = constant_op.constant( ["brain", "salad", "surgery", "UNK"]) diff --git a/tensorflow/contrib/slim/python/slim/learning.py b/tensorflow/contrib/slim/python/slim/learning.py index 415b7665127..b87342873e4 100644 --- a/tensorflow/contrib/slim/python/slim/learning.py +++ b/tensorflow/contrib/slim/python/slim/learning.py @@ -627,7 +627,7 @@ def train(train_op, init_feed_dict: A feed dictionary to use when executing the `init_op`. local_init_op: The local initialization operation. If left to its default value, then the session is initialized by calling - `tf.local_variables_initializer()` and `tf.initialize_all_tables()`. + `tf.local_variables_initializer()` and `tf.tables_initializer()`. init_fn: An optional callable to be executed after `init_op` is called. The callable must accept one argument, the session being initialized. ready_op: Operation to check if the model is ready to use. If left to its @@ -697,7 +697,7 @@ def train(train_op, if local_init_op == _USE_DEFAULT: local_init_op = control_flow_ops.group( tf_variables.local_variables_initializer(), - data_flow_ops.initialize_all_tables()) + data_flow_ops.tables_initializer()) if sync_optimizer is not None and isinstance( sync_optimizer, sync_replicas_optimizer.SyncReplicasOptimizer): diff --git a/tensorflow/python/framework/gen_docs_combined.py b/tensorflow/python/framework/gen_docs_combined.py index 5f6f066cdb2..7c387e1da44 100644 --- a/tensorflow/python/framework/gen_docs_combined.py +++ b/tensorflow/python/framework/gen_docs_combined.py @@ -169,6 +169,7 @@ def all_libraries(module_to_name, members, documented): "Inputs and Readers", exclude_symbols=["LookupTableBase", "HashTable", "initialize_all_tables", + "tables_initializer", "parse_single_sequence_example", "string_to_hash_bucket"], prefix=PREFIX_TEXT), diff --git a/tensorflow/python/ops/data_flow_ops.py b/tensorflow/python/ops/data_flow_ops.py index 16a9f5d96f7..72f0454e30c 100644 --- a/tensorflow/python/ops/data_flow_ops.py +++ b/tensorflow/python/ops/data_flow_ops.py @@ -39,6 +39,7 @@ from tensorflow.python.ops import math_ops # pylint: disable=wildcard-import from tensorflow.python.ops.gen_data_flow_ops import * # pylint: enable=wildcard-import +from tensorflow.python.util.deprecation import deprecated def _as_type_list(dtypes): @@ -1053,9 +1054,23 @@ class Barrier(object): self._barrier_ref, name=name) +@deprecated("2017-03-02", "Use `tf.tables_initializer` instead.") def initialize_all_tables(name="init_all_tables"): """Returns an Op that initializes all tables of the default graph. + Args: + name: Optional name for the initialization op. + + Returns: + An Op that initializes all tables. Note that if there are + not tables the returned Op is a NoOp. + """ + return tables_initializer(name) + + +def tables_initializer(name="init_all_tables"): + """Returns an Op that initializes all tables of the default graph. + Args: name: Optional name for the initialization op. diff --git a/tensorflow/python/ops/state_ops.py b/tensorflow/python/ops/state_ops.py index 3c7182f7dc1..ff1d2a6951b 100644 --- a/tensorflow/python/ops/state_ops.py +++ b/tensorflow/python/ops/state_ops.py @@ -106,6 +106,7 @@ automatically by the optimizers in most cases. ### Read-only Lookup Tables @@initialize_all_tables +@@tables_initializer ## Exporting and Importing Meta Graphs diff --git a/tensorflow/python/saved_model/main_op.py b/tensorflow/python/saved_model/main_op.py index 5d8c0db2d83..3f25dc137e3 100644 --- a/tensorflow/python/saved_model/main_op.py +++ b/tensorflow/python/saved_model/main_op.py @@ -39,7 +39,7 @@ def main_op(): """ init = variables.global_variables_initializer() init_local = variables.local_variables_initializer() - init_tables = tf_data_flow_ops.initialize_all_tables() + init_tables = tf_data_flow_ops.tables_initializer() return control_flow_ops.group(init, init_local, init_tables) diff --git a/tensorflow/python/training/monitored_session.py b/tensorflow/python/training/monitored_session.py index ffdd533fd9a..30b9ccf922b 100644 --- a/tensorflow/python/training/monitored_session.py +++ b/tensorflow/python/training/monitored_session.py @@ -237,7 +237,7 @@ class Scaffold(object): @staticmethod def _default_local_init_op(): return control_flow_ops.group(variables.local_variables_initializer(), - data_flow_ops.initialize_all_tables()) + data_flow_ops.tables_initializer()) def MonitoredTrainingSession(master='', # pylint: disable=invalid-name diff --git a/tensorflow/python/training/supervisor.py b/tensorflow/python/training/supervisor.py index 8e399fb46f8..aa5081870e2 100644 --- a/tensorflow/python/training/supervisor.py +++ b/tensorflow/python/training/supervisor.py @@ -440,7 +440,7 @@ class Supervisor(object): ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [variables.local_variables_initializer(), - data_flow_ops.initialize_all_tables()] + data_flow_ops.tables_initializer()] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)