diff --git a/tensorflow/lite/experimental/micro/examples/micro_speech/simple_features/simple_features_generator.cc b/tensorflow/lite/experimental/micro/examples/micro_speech/simple_features/simple_features_generator.cc index 3aa05b7bf1d..06683a14872 100644 --- a/tensorflow/lite/experimental/micro/examples/micro_speech/simple_features/simple_features_generator.cc +++ b/tensorflow/lite/experimental/micro/examples/micro_speech/simple_features/simple_features_generator.cc @@ -51,11 +51,12 @@ void CalculateDiscreteFourierTransform(float* time_series, int time_series_size, for (int i = 0; i < time_series_size / 2; ++i) { float real = 0; for (int j = 0; j < time_series_size; ++j) { - real += time_series[j] * cos(j * i * kPi * 2 / time_series_size); + real += time_series[j] * std::cos(j * i * kPi * 2 / time_series_size); } float imaginary = 0; for (int j = 0; j < time_series_size; ++j) { - imaginary -= time_series[j] * sin(j * i * kPi * 2 / time_series_size); + imaginary -= + time_series[j] * std::sin(j * i * kPi * 2 / time_series_size); } fourier_output[(i * 2) + 0] = real; fourier_output[(i * 2) + 1] = imaginary; @@ -66,7 +67,7 @@ void CalculateDiscreteFourierTransform(float* time_series, int time_series_size, // of the current sample window are weighted more heavily than those at the end. void CalculatePeriodicHann(int window_length, float* window_function) { for (int i = 0; i < window_length; ++i) { - window_function[i] = 0.5 - 0.5 * cos((2 * kPi * i) / window_length); + window_function[i] = 0.5 - 0.5 * std::cos((2 * kPi * i) / window_length); } }