diff --git a/tensorflow/examples/learn/iris_custom_decay_dnn.py b/tensorflow/examples/learn/iris_custom_decay_dnn.py index 4a219694d10..73bf20fada4 100644 --- a/tensorflow/examples/learn/iris_custom_decay_dnn.py +++ b/tensorflow/examples/learn/iris_custom_decay_dnn.py @@ -76,12 +76,12 @@ def main(unused_argv): classifier = tf.estimator.Estimator(model_fn=my_model) # Train. - train_input_fn = tf.estimator.inputs.numpy_input_fn( + train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=1000) # Predict. - test_input_fn = tf.estimator.inputs.numpy_input_fn( + test_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) diff --git a/tensorflow/examples/learn/iris_custom_model.py b/tensorflow/examples/learn/iris_custom_model.py index c6bdb86ba52..bf34d72ba07 100644 --- a/tensorflow/examples/learn/iris_custom_model.py +++ b/tensorflow/examples/learn/iris_custom_model.py @@ -73,12 +73,12 @@ def main(unused_argv): classifier = tf.estimator.Estimator(model_fn=my_model) # Train. - train_input_fn = tf.estimator.inputs.numpy_input_fn( + train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=1000) # Predict. - test_input_fn = tf.estimator.inputs.numpy_input_fn( + test_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) diff --git a/tensorflow/examples/tutorials/layers/cnn_mnist.py b/tensorflow/examples/tutorials/layers/cnn_mnist.py index 1e8d7d05e1c..670e929236f 100644 --- a/tensorflow/examples/tutorials/layers/cnn_mnist.py +++ b/tensorflow/examples/tutorials/layers/cnn_mnist.py @@ -134,7 +134,7 @@ def main(unused_argv): tensors=tensors_to_log, every_n_iter=50) # Train the model - train_input_fn = tf.estimator.inputs.numpy_input_fn( + train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={"x": train_data}, y=train_labels, batch_size=100, @@ -146,11 +146,8 @@ def main(unused_argv): hooks=[logging_hook]) # Evaluate the model and print results - eval_input_fn = tf.estimator.inputs.numpy_input_fn( - x={"x": eval_data}, - y=eval_labels, - num_epochs=1, - shuffle=False) + eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( + x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False) eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) print(eval_results)