diff --git a/configure.py b/configure.py index 234561d94a4..0b16fe13141 100644 --- a/configure.py +++ b/configure.py @@ -859,7 +859,7 @@ def set_tf_cuda_version(environ_cp): cuda_toolkit_paths_full = [ os.path.join(cuda_toolkit_path, x) for x in cuda_rt_lib_paths ] - if any([os.path.exists(x) for x in cuda_toolkit_paths_full]): + if any(os.path.exists(x) for x in cuda_toolkit_paths_full): break # Reset and retry diff --git a/tensorflow/compiler/tests/dense_layer_test.py b/tensorflow/compiler/tests/dense_layer_test.py index d1b90f098d7..23c94cf2451 100644 --- a/tensorflow/compiler/tests/dense_layer_test.py +++ b/tensorflow/compiler/tests/dense_layer_test.py @@ -42,7 +42,7 @@ def GetRunMetadataLabels(run_metadata): def InLabels(labels, substr): """Returns true iff one of the labels contains substr.""" - return any([substr in x for x in labels]) + return any(substr in x for x in labels) class DenseLayerTest(test.TestCase): diff --git a/tensorflow/compiler/tests/jit_test.py b/tensorflow/compiler/tests/jit_test.py index 6f51ae33a1b..dbea9849e21 100644 --- a/tensorflow/compiler/tests/jit_test.py +++ b/tensorflow/compiler/tests/jit_test.py @@ -75,7 +75,7 @@ def RunMetadataLabels(run_metadata): def InLabels(labels, substr): """Returns true iff one of the labels contains substr.""" - return any([substr in x for x in labels]) + return any(substr in x for x in labels) def MetadataHasXlaRunOp(run_metadata): diff --git a/tensorflow/contrib/constrained_optimization/python/constrained_minimization_problem.py b/tensorflow/contrib/constrained_optimization/python/constrained_minimization_problem.py index 41258edd908..6926c0d03fe 100644 --- a/tensorflow/contrib/constrained_optimization/python/constrained_minimization_problem.py +++ b/tensorflow/contrib/constrained_optimization/python/constrained_minimization_problem.py @@ -74,8 +74,8 @@ class ConstrainedMinimizationProblem(object): if (constraints_shape.ndims is None or proxy_constraints_shape.ndims is None or - any([ii is None for ii in constraints_shape.as_list()]) or - any([ii is None for ii in proxy_constraints_shape.as_list()])): + any(ii is None for ii in constraints_shape.as_list()) or + any(ii is None for ii in proxy_constraints_shape.as_list())): raise ValueError( "constraints and proxy_constraints must have fully-known shapes") if constraints_shape != proxy_constraints_shape: diff --git a/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_test.py b/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_test.py index 1e2c9121d63..a268415f0e6 100644 --- a/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_test.py +++ b/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_test.py @@ -778,8 +778,7 @@ class CudnnParamsFormatConverterTest(TensorFlowTestCase, # Test opaque_params size lower bound opaque_params_size_v = sess.run(opaque_params_size) - min_params_size = ( - np.sum([x.size for x in ws]) + np.sum([x.size for x in bs])) + min_params_size = sum(x.size for x in ws) + np.sum(x.size for x in bs) logging.info("min_parm_size: %d vs actual_opaque_param_size: %d", min_params_size, opaque_params_size_v) self.assertLessEqual(min_params_size, opaque_params_size_v) @@ -853,8 +852,7 @@ class CudnnParamsFormatConverterTest(TensorFlowTestCase, # Test opaque_params size lower bound opaque_params_size_v = sess.run(opaque_params_size) - min_params_size = ( - np.sum([x.size for x in ws]) + np.sum([x.size for x in bs])) + min_params_size = sum(x.size for x in ws) + sum(x.size for x in bs) logging.info("min_parm_size: %d vs actual_opaque_param_size: %d", min_params_size, opaque_params_size_v) self.assertLessEqual(min_params_size, opaque_params_size_v) diff --git a/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_test.py b/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_test.py index 6cc93dccb00..7e1b4062ce4 100644 --- a/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_test.py +++ b/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_test.py @@ -1045,8 +1045,8 @@ class CudnnRNNTestParamsSize(test_util.TensorFlowTestCase): # Min param size estimate = sum(weights.size) + sum(biases.size) min_params_size = ( - np.sum(list(map(np.prod, rnn.canonical_weight_shapes))) + - np.sum([sp[0] for sp in rnn.canonical_bias_shapes])) + sum(map(np.prod, rnn.canonical_weight_shapes)) + + sum(sp[0] for sp in rnn.canonical_bias_shapes)) opaque_params = rnn.trainable_variables[0] with self.test_session(use_gpu=True, graph=ops.get_default_graph()): diff --git a/tensorflow/contrib/distribute/python/minimize_loss_test.py b/tensorflow/contrib/distribute/python/minimize_loss_test.py index e77d3d455b0..129b394bb69 100644 --- a/tensorflow/contrib/distribute/python/minimize_loss_test.py +++ b/tensorflow/contrib/distribute/python/minimize_loss_test.py @@ -344,7 +344,7 @@ class MinimizeLossStepTest(test.TestCase, parameterized.TestCase): run_step() v = all_vars[0] - self.assertTrue(all([v is vi for vi in all_vars[1:]])) + self.assertTrue(all(v is vi for vi in all_vars[1:])) weight = numpy.squeeze(self.evaluate(v)) # Our model is: # predict = x * w diff --git a/tensorflow/contrib/distribute/python/tpu_strategy.py b/tensorflow/contrib/distribute/python/tpu_strategy.py index f1115cb0c07..94cf548cb44 100644 --- a/tensorflow/contrib/distribute/python/tpu_strategy.py +++ b/tensorflow/contrib/distribute/python/tpu_strategy.py @@ -254,7 +254,7 @@ class TPUExtended(distribute_lib.DistributionStrategyExtended): self, fn, multi_worker_iterator, iterations, initial_loop_values=None): output_shapes = multi_worker_iterator.output_shapes shapes = nest.flatten(output_shapes) - if any([not s.is_fully_defined() for s in shapes]): + if any(not s.is_fully_defined() for s in shapes): raise ValueError( "TPU currently requires fully defined shapes. Either use " "set_shape() on the input tensors or use " diff --git a/tensorflow/contrib/gan/python/losses/python/losses_impl.py b/tensorflow/contrib/gan/python/losses/python/losses_impl.py index df0342c80c5..c91ce2c0f3b 100644 --- a/tensorflow/contrib/gan/python/losses/python/losses_impl.py +++ b/tensorflow/contrib/gan/python/losses/python/losses_impl.py @@ -36,8 +36,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -import numpy as np - from tensorflow.contrib.framework.python.ops import variables as contrib_variables_lib from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util @@ -817,7 +815,7 @@ def _numerically_stable_global_norm(tensor_list): Returns: A scalar tensor with the global norm. """ - if np.all([x is None for x in tensor_list]): + if all(x is None for x in tensor_list): return 0.0 list_max = math_ops.reduce_max([math_ops.reduce_max(math_ops.abs(x)) for x in diff --git a/tensorflow/contrib/gan/python/train_test.py b/tensorflow/contrib/gan/python/train_test.py index 31d9e827005..e8c24eea3df 100644 --- a/tensorflow/contrib/gan/python/train_test.py +++ b/tensorflow/contrib/gan/python/train_test.py @@ -759,7 +759,7 @@ class TensorPoolAdjusteModelTest(test.TestCase): # For [pool_size, ?), the pool is full, tensor2 must be equal to some # historical values of tensor1 (which is previously stored in the # pool). - self.assertTrue(any([(v == t2).all() for v in history_values])) + self.assertTrue(any((v == t2).all() for v in history_values)) def _make_new_model_and_check(self, model, pool_size): pool_fn = lambda x: random_tensor_pool.tensor_pool(x, pool_size=pool_size) diff --git a/tensorflow/contrib/kernel_methods/python/kernel_estimators.py b/tensorflow/contrib/kernel_methods/python/kernel_estimators.py index de7530231db..1626e55b9b3 100644 --- a/tensorflow/contrib/kernel_methods/python/kernel_estimators.py +++ b/tensorflow/contrib/kernel_methods/python/kernel_estimators.py @@ -90,7 +90,7 @@ def _update_features_and_columns(features, feature_columns, mapped_column_name = column_name + "_MAPPED" # Construct new feature columns based on provided kernel_mappers. column_kernel_mappers = kernel_mappers_dict[feature_column] - new_dim = sum([mapper.output_dim for mapper in column_kernel_mappers]) + new_dim = sum(mapper.output_dim for mapper in column_kernel_mappers) mapped_columns.add( layers.feature_column.real_valued_column(mapped_column_name, new_dim)) diff --git a/tensorflow/contrib/layers/python/layers/regularizers_test.py b/tensorflow/contrib/layers/python/layers/regularizers_test.py index 51faba30c74..5cb00b76847 100644 --- a/tensorflow/contrib/layers/python/layers/regularizers_test.py +++ b/tensorflow/contrib/layers/python/layers/regularizers_test.py @@ -141,7 +141,7 @@ class RegularizerTest(test.TestCase): dummy_regularizer = lambda x: math_ops.reduce_sum(2 * x) array_weights_list = [[1.5], [2, 3, 4.2], [10, 42, 666.6]] tensor_weights_list = [constant_op.constant(x) for x in array_weights_list] - expected = sum([2 * x for l in array_weights_list for x in l]) + expected = sum(2 * x for l in array_weights_list for x in l) with self.cached_session(): result = regularizers.apply_regularization(dummy_regularizer, tensor_weights_list) diff --git a/tensorflow/contrib/learn/python/learn/estimators/dnn.py b/tensorflow/contrib/learn/python/learn/estimators/dnn.py index 18ca4214a1c..10fbd60ba2d 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/dnn.py +++ b/tensorflow/contrib/learn/python/learn/estimators/dnn.py @@ -150,10 +150,10 @@ def _dnn_model_fn(features, labels, mode, params, config=None): "input_from_feature_columns", values=tuple(six.itervalues(features)), partitioner=input_layer_partitioner) as input_layer_scope: - if all([ + if all( isinstance(fc, feature_column._FeatureColumn) # pylint: disable=protected-access for fc in feature_columns - ]): + ): net = layers.input_from_feature_columns( columns_to_tensors=features, feature_columns=feature_columns, diff --git a/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py b/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py index 7a3cc8bd984..2ade6b7b6ce 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py +++ b/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py @@ -236,10 +236,10 @@ def _dnn_linear_combined_model_fn(features, labels, mode, params, config=None): "input_from_feature_columns", values=tuple(six.itervalues(features)), partitioner=input_layer_partitioner) as dnn_input_scope: - if all([ + if all( isinstance(fc, feature_column_lib._FeatureColumn) # pylint: disable=protected-access for fc in dnn_feature_columns - ]): + ): net = layers.input_from_feature_columns( columns_to_tensors=features, feature_columns=dnn_feature_columns, @@ -292,8 +292,8 @@ def _dnn_linear_combined_model_fn(features, labels, mode, params, config=None): linear_parent_scope, values=tuple(six.itervalues(features)), partitioner=linear_partitioner) as scope: - if all([isinstance(fc, feature_column_lib._FeatureColumn) # pylint: disable=protected-access - for fc in linear_feature_columns]): + if all(isinstance(fc, feature_column_lib._FeatureColumn) # pylint: disable=protected-access + for fc in linear_feature_columns): if joint_linear_weights: linear_logits, _, _ = layers.joint_weighted_sum_from_feature_columns( columns_to_tensors=features, diff --git a/tensorflow/contrib/learn/python/learn/estimators/estimator.py b/tensorflow/contrib/learn/python/learn/estimators/estimator.py index 8bc869db895..9132b2209bc 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/estimator.py +++ b/tensorflow/contrib/learn/python/learn/estimators/estimator.py @@ -1066,11 +1066,11 @@ class BaseEstimator(sklearn.BaseEstimator, evaluable.Evaluable, chief_hooks = [] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): - saver_hook_exists = any([ + saver_hook_exists = any( isinstance(h, basic_session_run_hooks.CheckpointSaverHook) for h in (all_hooks + model_fn_ops.training_hooks + chief_hooks + model_fn_ops.training_chief_hooks) - ]) + ) if not saver_hook_exists: chief_hooks = [ basic_session_run_hooks.CheckpointSaverHook( @@ -1493,7 +1493,7 @@ class Estimator(BaseEstimator): # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator. - + THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. diff --git a/tensorflow/contrib/learn/python/learn/estimators/linear.py b/tensorflow/contrib/learn/python/learn/estimators/linear.py index 439b17e505d..9ee8d8004bf 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/linear.py +++ b/tensorflow/contrib/learn/python/learn/estimators/linear.py @@ -155,8 +155,8 @@ def _linear_model_fn(features, labels, mode, params, config=None): parent_scope, values=tuple(six.itervalues(features)), partitioner=partitioner) as scope: - if all([isinstance(fc, feature_column._FeatureColumn) # pylint: disable=protected-access - for fc in feature_columns]): + if all(isinstance(fc, feature_column._FeatureColumn) # pylint: disable=protected-access + for fc in feature_columns): if joint_weights: layer_fn = layers.joint_weighted_sum_from_feature_columns else: diff --git a/tensorflow/contrib/quantize/python/quantize.py b/tensorflow/contrib/quantize/python/quantize.py index 338923f7512..21d1b121309 100644 --- a/tensorflow/contrib/quantize/python/quantize.py +++ b/tensorflow/contrib/quantize/python/quantize.py @@ -160,7 +160,7 @@ def Quantize(graph, # shouldn't quantize it, since the activation will be Fused into the # Add at inference time. consumers = input_to_ops_map.ConsumerOperations(layer_match.bypass_op) - if any([consumer.type in _ACTIVATION_TYPES for consumer in consumers]): + if any(consumer.type in _ACTIVATION_TYPES for consumer in consumers): logging.info('Skipping %s, because its followed by an activation.', layer_match.bypass_op.name) else: @@ -195,7 +195,7 @@ def Quantize(graph, # Add at inference time. consumers = input_to_ops_map.ConsumerOperations( layer_match.post_activation_bypass_op) - if any([consumer.type in _RELU_TYPES for consumer in consumers]): + if any(consumer.type in _RELU_TYPES for consumer in consumers): logging.info('Skipping %s, because its followed by an activation.', layer_match.post_activation_bypass_op.name) else: diff --git a/tensorflow/contrib/seq2seq/python/kernel_tests/attention_wrapper_test.py b/tensorflow/contrib/seq2seq/python/kernel_tests/attention_wrapper_test.py index 8668c67cf95..922f21b98b3 100644 --- a/tensorflow/contrib/seq2seq/python/kernel_tests/attention_wrapper_test.py +++ b/tensorflow/contrib/seq2seq/python/kernel_tests/attention_wrapper_test.py @@ -154,8 +154,8 @@ class AttentionWrapperTest(test.TestCase): if attention_layer_sizes is not None: # Compute sum of attention_layer_sizes. Use encoder_output_depth if None. - attention_depth = sum([attention_layer_size or encoder_output_depth - for attention_layer_size in attention_layer_sizes]) + attention_depth = sum(attention_layer_size or encoder_output_depth + for attention_layer_size in attention_layer_sizes) elif attention_layers is not None: # Compute sum of attention_layers output depth. attention_depth = sum( diff --git a/tensorflow/contrib/tpu/python/tpu/tpu.py b/tensorflow/contrib/tpu/python/tpu/tpu.py index a02361241ce..def57da20d6 100644 --- a/tensorflow/contrib/tpu/python/tpu/tpu.py +++ b/tensorflow/contrib/tpu/python/tpu/tpu.py @@ -1111,7 +1111,7 @@ def validate_inference_rewrite_for_variables(graph): Raises: RuntimeError: if validation failed. """ - if not any([x.type == "GuaranteeConst" for x in graph.get_operations()]): + if not any(x.type == "GuaranteeConst" for x in graph.get_operations()): raise RuntimeError( "No GuaranteeConst ops found in the graph after running " "tpu.rewrite_for_inference(...). Please check that you are using " diff --git a/tensorflow/python/autograph/utils/type_check.py b/tensorflow/python/autograph/utils/type_check.py index 8748abc47bc..ccef7dee039 100644 --- a/tensorflow/python/autograph/utils/type_check.py +++ b/tensorflow/python/autograph/utils/type_check.py @@ -30,4 +30,4 @@ def is_tensor(*args): Returns: True if any *args are TensorFlow types, False if none are. """ - return any([tensor_util.is_tensor(a) for a in args]) + return any(tensor_util.is_tensor(a) for a in args) diff --git a/tensorflow/python/data/experimental/kernel_tests/optimization/map_vectorization_test.py b/tensorflow/python/data/experimental/kernel_tests/optimization/map_vectorization_test.py index 470de580e83..18b3bc94245 100644 --- a/tensorflow/python/data/experimental/kernel_tests/optimization/map_vectorization_test.py +++ b/tensorflow/python/data/experimental/kernel_tests/optimization/map_vectorization_test.py @@ -459,7 +459,7 @@ class MapVectorizationBenchmark(test.Benchmark): return median_time def _compare(self, input_dataset, map_fn, batch_size, input_size, str_id): - num_elems = int(np.sum([np.prod(x) for x in input_size])) + num_elems = sum(np.prod(x) for x in input_size) name_template = "{}__batch_size_{}_input_element_size_{}_{}" unoptimized = input_dataset.map(map_fn).batch(batch_size) unoptimized_op = unoptimized.make_one_shot_iterator().get_next() diff --git a/tensorflow/python/data/experimental/kernel_tests/serialization/filter_dataset_serialization_test.py b/tensorflow/python/data/experimental/kernel_tests/serialization/filter_dataset_serialization_test.py index 225f6cbac01..e3ba8ad231b 100644 --- a/tensorflow/python/data/experimental/kernel_tests/serialization/filter_dataset_serialization_test.py +++ b/tensorflow/python/data/experimental/kernel_tests/serialization/filter_dataset_serialization_test.py @@ -17,8 +17,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -import numpy as np - from tensorflow.python.data.experimental.kernel_tests.serialization import dataset_serialization_test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import sparse_tensor @@ -35,7 +33,7 @@ class FilterDatasetSerializationTest( def testFilterCore(self): div = 3 - num_outputs = np.sum([x % 3 != 2 for x in range(100)]) + num_outputs = sum(x % 3 != 2 for x in range(100)) self.run_core_tests(lambda: self._build_filter_range_graph(div), lambda: self._build_filter_range_graph(div * 2), num_outputs) @@ -47,7 +45,7 @@ class FilterDatasetSerializationTest( lambda d: d["foo"] + d["bar"]) def testFilterDictCore(self): - num_outputs = np.sum([(x**2) % 2 == 0 for x in range(10)]) + num_outputs = sum((x**2) % 2 == 0 for x in range(10)) self.run_core_tests(self._build_filter_dict_graph, None, num_outputs) def _build_sparse_filter(self): diff --git a/tensorflow/python/data/experimental/ops/parsing_ops.py b/tensorflow/python/data/experimental/ops/parsing_ops.py index 6615b9022a2..a63eb8c516e 100644 --- a/tensorflow/python/data/experimental/ops/parsing_ops.py +++ b/tensorflow/python/data/experimental/ops/parsing_ops.py @@ -138,10 +138,10 @@ def parse_example_dataset(features, num_parallel_calls=1): def _apply_fn(dataset): """Function from `Dataset` to `Dataset` that applies the transformation.""" out_dataset = _ParseExampleDataset(dataset, features, num_parallel_calls) - if any([ + if any( isinstance(feature, parsing_ops.SparseFeature) for _, feature in features.items() - ]): + ): # pylint: disable=protected-access # pylint: disable=g-long-lambda out_dataset = out_dataset.map( diff --git a/tensorflow/python/data/kernel_tests/dataset_ops_test.py b/tensorflow/python/data/kernel_tests/dataset_ops_test.py index 1f22a37c2e0..3454082f96d 100644 --- a/tensorflow/python/data/kernel_tests/dataset_ops_test.py +++ b/tensorflow/python/data/kernel_tests/dataset_ops_test.py @@ -42,7 +42,7 @@ class DatasetOpsTest(test_base.DatasetTestBase, parameterized.TestCase): with self.cached_session() as sess: graph = graph_pb2.GraphDef().FromString( sess.run(dataset._as_serialized_graph())) - self.assertTrue(any([node.op != "RangeDataset" for node in graph.node])) + self.assertTrue(any(node.op != "RangeDataset" for node in graph.node)) @staticmethod def make_apply_fn(dataset): diff --git a/tensorflow/python/data/util/sparse.py b/tensorflow/python/data/util/sparse.py index 5e6d2247097..f2e22fefd31 100644 --- a/tensorflow/python/data/util/sparse.py +++ b/tensorflow/python/data/util/sparse.py @@ -34,7 +34,7 @@ def any_sparse(classes): Returns: `True` if `classes` contains a sparse tensor type and `False` otherwise. """ - return any([c is sparse_tensor.SparseTensor for c in nest.flatten(classes)]) + return any(c is sparse_tensor.SparseTensor for c in nest.flatten(classes)) def as_dense_shapes(shapes, classes): diff --git a/tensorflow/python/distribute/cross_device_ops.py b/tensorflow/python/distribute/cross_device_ops.py index f55385eddcc..de25b718bfb 100644 --- a/tensorflow/python/distribute/cross_device_ops.py +++ b/tensorflow/python/distribute/cross_device_ops.py @@ -103,10 +103,10 @@ def _validate_value_destination_pairs(value_destination_pairs): # pylint: disable=g-missing-docstring if not value_destination_pairs: return False if not isinstance(value_destination_pairs, (list, tuple)): return False - if not all([isinstance(pair, tuple) for pair in value_destination_pairs]): + if not all(isinstance(pair, tuple) for pair in value_destination_pairs): return False - if not all([isinstance(v[0], value_lib.PerReplica) - for v in value_destination_pairs]): + if not all(isinstance(v[0], value_lib.PerReplica) + for v in value_destination_pairs): return False return True @@ -132,10 +132,10 @@ def _devices_match(left, right): def _all_devices_match(value_destination_pairs): - if not all([_devices_match(v, d) for v, d in value_destination_pairs]): + if not all(_devices_match(v, d) for v, d in value_destination_pairs): return False - if not all([_devices_match(v, value_destination_pairs[0][0]) - for v, _ in value_destination_pairs[1:]]): + if not all(_devices_match(v, value_destination_pairs[0][0]) + for v, _ in value_destination_pairs[1:]): return False return True @@ -401,7 +401,7 @@ class ConcatAndSplitPacker(object): # all gradient shapes are defined, we use another method to get the # total size. # TODO(yuefengz): move this logic to array_ops.size. - if all([g.shape.is_fully_defined() for g, _ in device_grads_and_vars]): + if all(g.shape.is_fully_defined() for g, _ in device_grads_and_vars): total_grad_size = sum( [g.shape.num_elements() for g, _ in device_grads_and_vars]) else: @@ -941,7 +941,7 @@ def choose_the_best(devices, session_config=None): "TensorFlow sessions.") return ReductionToOneDeviceCrossDeviceOps() - if any([d.device_type.lower() != "gpu" for d in using_devices]): + if any(d.device_type.lower() != "gpu" for d in using_devices): logging.warning("Not all devices in DistributionStrategy are visible to " "TensorFlow session.") return ReductionToOneDeviceCrossDeviceOps() diff --git a/tensorflow/python/distribute/cross_device_utils.py b/tensorflow/python/distribute/cross_device_utils.py index 7903992ac7d..0faadd7e0cf 100644 --- a/tensorflow/python/distribute/cross_device_utils.py +++ b/tensorflow/python/distribute/cross_device_utils.py @@ -420,7 +420,7 @@ def sum_gradients_all_reduce(dev_prefixes, replica_grads, num_workers, alg, Returns: list of reduced tensors """ - alg_contains_shuffle = any([n in alg for n in ['pscpu', 'psgpu']]) + alg_contains_shuffle = any(n in alg for n in ['pscpu', 'psgpu']) is_hierarchical = '/' in alg if 'pscpu' in alg: aux_devices = [prefix + '/cpu:0' for prefix in dev_prefixes] diff --git a/tensorflow/python/eager/backprop.py b/tensorflow/python/eager/backprop.py index 84b61f47c12..99da4227813 100644 --- a/tensorflow/python/eager/backprop.py +++ b/tensorflow/python/eager/backprop.py @@ -547,11 +547,11 @@ def _aggregate_grads(gradients): if len(gradients) == 1: return gradients[0] - if all([isinstance(g, ops.Tensor) for g in gradients]): + if all(isinstance(g, ops.Tensor) for g in gradients): return gen_math_ops.add_n(gradients) else: - assert all([isinstance(g, (ops.Tensor, ops.IndexedSlices)) - for g in gradients]) + assert all(isinstance(g, (ops.Tensor, ops.IndexedSlices)) + for g in gradients) indexed_slices_list = [] for grad in gradients: # TODO(xpan): Support nested IndexedSlices and core IndexedSlices diff --git a/tensorflow/python/eager/function.py b/tensorflow/python/eager/function.py index bc92a0c9745..eff7a384b8f 100644 --- a/tensorflow/python/eager/function.py +++ b/tensorflow/python/eager/function.py @@ -89,8 +89,8 @@ def _parse_func_attrs(attributes): """ attrs = {} for key, value in attributes.items(): - if not any([re.match(reg, key) - for reg in WHITELIST_FUNCTION_ATTRIBUTE_REGEX]): + if not any(re.match(reg, key) + for reg in WHITELIST_FUNCTION_ATTRIBUTE_REGEX): raise ValueError("Attribute name is not whitelisted. " "Whitelisted: prefix %s, got: %s" % (WHITELIST_FUNCTION_ATTRIBUTE_REGEX, key)) diff --git a/tensorflow/python/framework/function.py b/tensorflow/python/framework/function.py index 230a5546414..622686ce005 100644 --- a/tensorflow/python/framework/function.py +++ b/tensorflow/python/framework/function.py @@ -874,7 +874,7 @@ def func_graph_from_py_func(func, arg_names, arg_types, name=None, # If func only returned one value, make it a tuple. if not isinstance(outputs, (list, tuple)): outputs = (outputs,) - if any([_ is None for _ in outputs]): + if any(_ is None for _ in outputs): raise ValueError("Function %s can not return None." % name) # Ensures each output is a Tensor in the function graph. outputs = [ops.convert_to_tensor(t) for t in outputs] @@ -1190,7 +1190,7 @@ def get_extra_args(): def _type_list_to_str(types): - if any([_ not in _DTYPE_TO_STR for _ in types]): + if any(_ not in _DTYPE_TO_STR for _ in types): raise ValueError("Unsupported dtypes: %s" % types) return "".join([_DTYPE_TO_STR[_] for _ in types]) diff --git a/tensorflow/python/framework/meta_graph_test.py b/tensorflow/python/framework/meta_graph_test.py index 3605ed7fa2a..559a76bebb8 100644 --- a/tensorflow/python/framework/meta_graph_test.py +++ b/tensorflow/python/framework/meta_graph_test.py @@ -600,11 +600,11 @@ class ScopedMetaGraphTest(test.TestCase): with graph.as_default(): variables.Variable(initial_value=1.0, trainable=True) self.assertTrue( - all([ + all( graph.get_collection(key) for key in [ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.TRAINABLE_VARIABLES] - ])) + )) meta_graph.export_scoped_meta_graph( filename=meta_graph_filename, graph=graph) diff --git a/tensorflow/python/framework/op_def_library.py b/tensorflow/python/framework/op_def_library.py index 9955a9a2cdd..2318b32ef10 100644 --- a/tensorflow/python/framework/op_def_library.py +++ b/tensorflow/python/framework/op_def_library.py @@ -570,7 +570,7 @@ class OpDefLibrary(object): "than minimum length %d." % (input_name, op_type_name, len(values), num_attr.minimum)) # All tensors must have the same base type. - if any([bt != base_types[0] for bt in base_types]): + if any(bt != base_types[0] for bt in base_types): raise TypeError( "All tensors passed to '%s' of '%s' Op " "must have the same type." % diff --git a/tensorflow/python/framework/test_util.py b/tensorflow/python/framework/test_util.py index bf0ebaea997..7c486b2cbee 100644 --- a/tensorflow/python/framework/test_util.py +++ b/tensorflow/python/framework/test_util.py @@ -1044,7 +1044,7 @@ def is_gpu_available(cuda_only=False, min_cuda_compute_capability=None): return True return False except errors_impl.NotFoundError as e: - if not all([x in str(e) for x in ["CUDA", "not find"]]): + if not all(x in str(e) for x in ["CUDA", "not find"]): raise e else: logging.error(str(e)) diff --git a/tensorflow/python/keras/backend.py b/tensorflow/python/keras/backend.py index 54421d90220..c7654642d01 100644 --- a/tensorflow/python/keras/backend.py +++ b/tensorflow/python/keras/backend.py @@ -2325,7 +2325,7 @@ def concatenate(tensors, axis=-1): else: axis = 0 - if py_all([is_sparse(x) for x in tensors]): + if py_all(is_sparse(x) for x in tensors): return sparse_ops.sparse_concat(axis, tensors) else: return array_ops.concat([to_dense(x) for x in tensors], axis) diff --git a/tensorflow/python/keras/engine/base_layer.py b/tensorflow/python/keras/engine/base_layer.py index c8e964d1f72..54269655092 100644 --- a/tensorflow/python/keras/engine/base_layer.py +++ b/tensorflow/python/keras/engine/base_layer.py @@ -768,7 +768,7 @@ class Layer(checkpointable.CheckpointableBase): if context.executing_eagerly(): # Accept NumPy inputs by converting to Tensors when executing eagerly. - if all([isinstance(x, (np.ndarray, float, int)) for x in input_list]): + if all(isinstance(x, (np.ndarray, float, int)) for x in input_list): inputs = nest.map_structure(ops.convert_to_tensor, inputs) input_list = nest.flatten(inputs) @@ -1442,8 +1442,7 @@ class Layer(checkpointable.CheckpointableBase): ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') - weight_shapes = [w.shape.as_list() for w in self.weights] - return int(sum([np.prod(w) for w in weight_shapes])) + return int(sum(np.prod(w.shape.as_list()) for w in self.weights)) @property def output_shape(self): @@ -1758,7 +1757,7 @@ def have_all_keras_metadata(iterable_or_element): iterable = [iterable_or_element] else: iterable = nest.flatten(iterable_or_element) - return all([hasattr(x, '_keras_history') for x in iterable]) + return all(hasattr(x, '_keras_history') for x in iterable) def collect_previous_mask(input_tensors): diff --git a/tensorflow/python/keras/engine/distributed_training_utils.py b/tensorflow/python/keras/engine/distributed_training_utils.py index 25685fb5cfe..7d915544fc6 100644 --- a/tensorflow/python/keras/engine/distributed_training_utils.py +++ b/tensorflow/python/keras/engine/distributed_training_utils.py @@ -383,7 +383,11 @@ def validate_inputs(x, y, distribution_strategy): for i in [x, y]: if isinstance(i, dataset_ops.Dataset): shapes = nest.flatten(i.output_shapes) - if any([not s.is_fully_defined() for s in shapes]): + try: + s = next(s for s in shapes if not s.is_fully_defined()) + except StopIteration: + continue + else: raise ValueError( 'Using TPUs currently requires fully defined shapes. Either use ' 'set_shape() on the input tensors or use ' diff --git a/tensorflow/python/keras/engine/network.py b/tensorflow/python/keras/engine/network.py index 41631764830..f854cdd4e0d 100644 --- a/tensorflow/python/keras/engine/network.py +++ b/tensorflow/python/keras/engine/network.py @@ -428,8 +428,8 @@ class Network(base_layer.Layer): @property def stateful(self): - return any([(hasattr(layer, 'stateful') and layer.stateful) - for layer in self.layers]) + return any((hasattr(layer, 'stateful') and layer.stateful) + for layer in self.layers) def reset_states(self): for layer in self.layers: diff --git a/tensorflow/python/keras/engine/saving.py b/tensorflow/python/keras/engine/saving.py index 22c48e3f13a..54d9e32fb25 100644 --- a/tensorflow/python/keras/engine/saving.py +++ b/tensorflow/python/keras/engine/saving.py @@ -917,7 +917,7 @@ def save_attributes_to_hdf5_group(group, name, data): chunked_data = np.array_split(data_npy, num_chunks) # This will never loop forever thanks to the test above. - while any([x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data]): + while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data): num_chunks += 1 chunked_data = np.array_split(data_npy, num_chunks) diff --git a/tensorflow/python/keras/engine/training_utils.py b/tensorflow/python/keras/engine/training_utils.py index 8669daf99ef..1735db8b6b9 100644 --- a/tensorflow/python/keras/engine/training_utils.py +++ b/tensorflow/python/keras/engine/training_utils.py @@ -58,10 +58,10 @@ def _map_nested(data, func): def _nested_all(data, cond_func): """Checks if all elements in a nested structure satisfy cond_func.""" if isinstance(data, (tuple, list)): - return all([_nested_all(nested_data, cond_func) for nested_data in data]) + return all(_nested_all(nested_data, cond_func) for nested_data in data) elif isinstance(data, dict): return all( - [_nested_all(nested_data, cond_func) for nested_data in data.values()]) + _nested_all(nested_data, cond_func) for nested_data in data.values()) else: return cond_func(data) @@ -69,7 +69,7 @@ def _nested_all(data, cond_func): def _nested_any(data, cond_func): """Checks if any nested_elements in a nested structure satisfy cond_func.""" if isinstance(data, (tuple, list)): - return any([_nested_any(nested_data, cond_func) for nested_data in data]) + return any(_nested_any(nested_data, cond_func) for nested_data in data) elif isinstance(data, dict): return any( [_nested_any(nested_data, cond_func) for nested_data in data.values()]) diff --git a/tensorflow/python/keras/layers/merge.py b/tensorflow/python/keras/layers/merge.py index f295af3fe04..45e705c6960 100644 --- a/tensorflow/python/keras/layers/merge.py +++ b/tensorflow/python/keras/layers/merge.py @@ -212,7 +212,7 @@ class _Merge(Layer): if len(mask) != len(inputs): raise ValueError('The lists `inputs` and `mask` ' 'should have the same length.') - if all([m is None for m in mask]): + if all(m is None for m in mask): return None masks = [array_ops.expand_dims(m, axis=0) for m in mask if m is not None] return K.all(K.concatenate(masks, axis=0), axis=0, keepdims=False) @@ -378,7 +378,7 @@ class Concatenate(_Merge): if not isinstance(input_shape, list) or len(input_shape) < 2: raise ValueError('A `Concatenate` layer should be called ' 'on a list of at least 2 inputs') - if all([shape is None for shape in input_shape]): + if all(shape is None for shape in input_shape): return reduced_inputs_shapes = [list(shape) for shape in input_shape] shape_set = set() @@ -418,7 +418,7 @@ class Concatenate(_Merge): if len(mask) != len(inputs): raise ValueError('The lists `inputs` and `mask` ' 'should have the same length.') - if all([m is None for m in mask]): + if all(m is None for m in mask): return None # Make a list of masks while making sure # the dimensionality of each mask diff --git a/tensorflow/python/keras/utils/layer_utils.py b/tensorflow/python/keras/utils/layer_utils.py index 158a9a5e76d..60677be7351 100644 --- a/tensorflow/python/keras/utils/layer_utils.py +++ b/tensorflow/python/keras/utils/layer_utils.py @@ -77,7 +77,7 @@ def count_params(weights): Returns: The total number of scalars composing the weights """ - return int(np.sum([np.prod(p.get_shape().as_list()) for p in set(weights)])) + return int(sum(np.prod(p.get_shape().as_list()) for p in set(weights))) def print_summary(model, line_length=None, positions=None, print_fn=None): diff --git a/tensorflow/python/kernel_tests/control_flow_ops_py_test.py b/tensorflow/python/kernel_tests/control_flow_ops_py_test.py index 3b8f917282c..59966ebc845 100644 --- a/tensorflow/python/kernel_tests/control_flow_ops_py_test.py +++ b/tensorflow/python/kernel_tests/control_flow_ops_py_test.py @@ -863,13 +863,13 @@ class ControlFlowTest(test.TestCase): # Should just be [1, 1], but possibly a sparse representation gv, gi = sess.run([grad.values, grad.indices], feed_dict={c: 1}) dense_gv = [ - sum([y for (x, y) in zip(gi, gv) if x == i]) for i in range(2) + sum(y for (x, y) in zip(gi, gv) if x == i) for i in range(2) ] self.assertAllEqual(dense_gv, [1.0, 1.0]) # Should be [0, 2], as the else forwards v1[1] twice gv, gi = sess.run([grad.values, grad.indices], feed_dict={c: 3}) dense_gv = [ - sum([y for (x, y) in zip(gi, gv) if x == i]) for i in range(2) + sum(y for (x, y) in zip(gi, gv) if x == i) for i in range(2) ] self.assertAllEqual(dense_gv, [0.0, 2.0]) @@ -2809,7 +2809,7 @@ class ControlFlowTest(test.TestCase): self.assertAllClose([156.0, 400.0], sess.run(r, feed_dict=feed_dict)) name = "gradients/while/stopped_grad" all_ops = x.graph.get_operations() - self.assertFalse(any([name in op.name for op in all_ops])) + self.assertFalse(any(name in op.name for op in all_ops)) @test_util.disable_control_flow_v2("b/117954949") def testWhileGradGradFail(self): diff --git a/tensorflow/python/ops/bitwise_ops_test.py b/tensorflow/python/ops/bitwise_ops_test.py index dfb40db2d5a..f6f35374c0e 100644 --- a/tensorflow/python/ops/bitwise_ops_test.py +++ b/tensorflow/python/ops/bitwise_ops_test.py @@ -59,7 +59,7 @@ class BitwiseOpTest(test_util.TensorFlowTestCase): 2**31 - 1, 2**31, 2**32 - 1, 2**32, -2**32 + 1, -2**32, -2**63 + 1, 2**63 - 1] def count_bits(x): - return sum([bin(z).count("1") for z in six.iterbytes(x.tobytes())]) + return sum(bin(z).count("1") for z in six.iterbytes(x.tobytes())) for dtype in dtype_list: with self.cached_session(use_gpu=True) as sess: print("PopulationCount test: ", dtype) diff --git a/tensorflow/python/ops/control_flow_ops.py b/tensorflow/python/ops/control_flow_ops.py index 4417632e692..a36a24ebb08 100644 --- a/tensorflow/python/ops/control_flow_ops.py +++ b/tensorflow/python/ops/control_flow_ops.py @@ -158,7 +158,7 @@ def Assert(condition, data, summarize=None, name=None): with ops.name_scope(name, "Assert", [condition, data]) as name: xs = ops.convert_n_to_tensor(data) - if all([x.dtype in {dtypes.string, dtypes.int32} for x in xs]): + if all(x.dtype in {dtypes.string, dtypes.int32} for x in xs): # As a simple heuristic, we assume that string and int32 are # on host to avoid the need to use cond. If it is not case, # we will pay the price copying the tensor to host memory. @@ -457,19 +457,19 @@ def merge(inputs, name=None): ValueError: If any of the inputs is None, or inputs are IndexedSlices and some but not all have a dense_shape property. """ - if any([inp is None for inp in inputs]): + if any(inp is None for inp in inputs): raise ValueError("At least one of the merge inputs is None: %s" % inputs) with ops.name_scope(name, "Merge", inputs) as name: inputs = [ ops.internal_convert_to_tensor_or_indexed_slices(inp, as_ref=True) for inp in inputs ] - if all([isinstance(v, ops.Tensor) for v in inputs]): - if all([v.dtype._is_ref_dtype for v in inputs]): # pylint: disable=protected-access + if all(isinstance(v, ops.Tensor) for v in inputs): + if all(v.dtype._is_ref_dtype for v in inputs): # pylint: disable=protected-access return gen_control_flow_ops.ref_merge(inputs, name) else: return gen_control_flow_ops.merge(inputs, name) - elif all([isinstance(v, sparse_tensor.SparseTensor) for v in inputs]): + elif all(isinstance(v, sparse_tensor.SparseTensor) for v in inputs): # Only handle the case when all inputs are SparseTensor. values, _ = merge([inp.values for inp in inputs], name=name) indices, chosen_index = gen_control_flow_ops.merge( @@ -557,7 +557,7 @@ def _SetShapeInvariants(input_vars, enter_vars, shapes): if shapes is None: return flat_shapes = nest.flatten(shapes) - if not all([isinstance(s, tensor_shape.TensorShape) for s in flat_shapes]): + if not all(isinstance(s, tensor_shape.TensorShape) for s in flat_shapes): raise ValueError("`shapes` must be a (possibly nested) list of shapes.") # Check that the shapes of the inputs are less than the shape invariants, # and set the shapes of `enter_vars` to the shape invariants. diff --git a/tensorflow/python/ops/data_flow_ops.py b/tensorflow/python/ops/data_flow_ops.py index 0fac7994cbc..bb08dbaea1c 100644 --- a/tensorflow/python/ops/data_flow_ops.py +++ b/tensorflow/python/ops/data_flow_ops.py @@ -79,7 +79,7 @@ def _as_shape_list(shapes, shapes = [shapes] shapes = [tensor_shape.as_shape(shape) for shape in shapes] if not unknown_dim_allowed: - if any([not shape.is_fully_defined() for shape in shapes]): + if any(not shape.is_fully_defined() for shape in shapes): raise ValueError("All shapes must be fully defined: %s" % shapes) if not unknown_rank_allowed: if any([shape.dims is None for shape in shapes]): @@ -198,11 +198,11 @@ class QueueBase(object): raise TypeError("A list of queues expected") dtypes = queues[0].dtypes - if not all([dtypes == q.dtypes for q in queues[1:]]): + if not all(dtypes == q.dtypes for q in queues[1:]): raise TypeError("Queues do not have matching component dtypes.") names = queues[0].names - if not all([names == q.names for q in queues[1:]]): + if not all(names == q.names for q in queues[1:]): raise TypeError("Queues do not have matching component names.") queue_shapes = [q.shapes for q in queues] diff --git a/tensorflow/python/ops/gradients_impl.py b/tensorflow/python/ops/gradients_impl.py index 53c0709e326..278008526c0 100644 --- a/tensorflow/python/ops/gradients_impl.py +++ b/tensorflow/python/ops/gradients_impl.py @@ -895,7 +895,7 @@ def _HasAnyNotNoneGrads(grads, op): if isinstance(out_grad, (ops.Tensor, ops.IndexedSlices)): return True if out_grad and isinstance(out_grad, collections.Sequence): - if any([g is not None for g in out_grad]): + if any(g is not None for g in out_grad): return True return False @@ -1110,11 +1110,11 @@ def _AggregatedGrads(grads, assert control_flow_util.IsLoopSwitch(op) continue # Grads have to be Tensors or IndexedSlices - if (isinstance(out_grad, collections.Sequence) and not all([ + if (isinstance(out_grad, collections.Sequence) and not all( isinstance(g, (ops.Tensor, ops.IndexedSlices)) for g in out_grad if g is not None - ])): + )): raise TypeError("gradients have to be either all Tensors " "or all IndexedSlices") # Aggregate multiple gradients, and convert [] to None. @@ -1122,7 +1122,7 @@ def _AggregatedGrads(grads, if len(out_grad) < 2: used = "nop" out_grads[i] = out_grad[0] - elif all([isinstance(g, ops.Tensor) for g in out_grad if g is not None]): + elif all(isinstance(g, ops.Tensor) for g in out_grad if g is not None): tensor_shape = _AccumulatorShape(out_grad) if (aggregation_method == AggregationMethod.EXPERIMENTAL_ACCUMULATE_N and len(out_grad) > 2 and tensor_shape.is_fully_defined()): diff --git a/tensorflow/python/ops/parallel_for/pfor.py b/tensorflow/python/ops/parallel_for/pfor.py index d789dc65b13..a22c1126c93 100644 --- a/tensorflow/python/ops/parallel_for/pfor.py +++ b/tensorflow/python/ops/parallel_for/pfor.py @@ -1152,9 +1152,8 @@ class PFor(object): continue converted_inputs = [self._conversion_map[inp] for inp in y_op.inputs] - some_input_converted = any( - [self._was_converted(x) for x in y_op.inputs]) - some_input_stacked = any([x.is_stacked for x in converted_inputs]) + some_input_converted = any(self._was_converted(x) for x in y_op.inputs) + some_input_stacked = any(x.is_stacked for x in converted_inputs) converted_control_ops = set() some_control_input_converted = False @@ -1198,7 +1197,7 @@ class PFor(object): # All inputs are unstacked or uncoverted but some control inputs are # converted. # TODO(rachelim): Handle the case where some inputs are sparsely - # stacked (i.e. any([x.is_sparse_stacked for x in converted_inputs])) + # stacked (i.e. any(x.is_sparse_stacked for x in converted_inputs)) new_op = _create_op(y_op.type, [x.t for x in converted_inputs], [x.dtype for x in y_op.outputs], y_op.node_def.attr) diff --git a/tensorflow/python/ops/rnn.py b/tensorflow/python/ops/rnn.py index c23b85847cb..ec48cab91d1 100644 --- a/tensorflow/python/ops/rnn.py +++ b/tensorflow/python/ops/rnn.py @@ -117,7 +117,7 @@ def _infer_state_dtype(explicit_dtype, state): inferred_dtypes = [element.dtype for element in nest.flatten(state)] if not inferred_dtypes: raise ValueError("Unable to infer dtype from empty state.") - all_same = all([x == inferred_dtypes[0] for x in inferred_dtypes]) + all_same = all(x == inferred_dtypes[0] for x in inferred_dtypes) if not all_same: raise ValueError( "State has tensors of different inferred_dtypes. Unable to infer a " diff --git a/tensorflow/python/ops/rnn_cell_impl.py b/tensorflow/python/ops/rnn_cell_impl.py index 85efd6a4f75..ffc45619a74 100644 --- a/tensorflow/python/ops/rnn_cell_impl.py +++ b/tensorflow/python/ops/rnn_cell_impl.py @@ -1456,7 +1456,7 @@ class MultiRNNCell(RNNCell): if self._state_is_tuple: return tuple(cell.state_size for cell in self._cells) else: - return sum([cell.state_size for cell in self._cells]) + return sum(cell.state_size for cell in self._cells) @property def output_size(self): diff --git a/tensorflow/python/ops/variable_scope.py b/tensorflow/python/ops/variable_scope.py index 44bb62a5dcb..4f210e3b124 100644 --- a/tensorflow/python/ops/variable_scope.py +++ b/tensorflow/python/ops/variable_scope.py @@ -680,7 +680,7 @@ class _VariableStore(object): "Partitioner returned a partition list that does not match the " "Variable's rank: %s vs. %s" % (partitions, shape)) - if any([p < 1 for p in partitions]): + if any(p < 1 for p in partitions): raise ValueError( "Partitioner returned zero partitions for some axes: %s" % partitions) diff --git a/tensorflow/python/ops/variables.py b/tensorflow/python/ops/variables.py index 5bee5224819..c8d12c8ecf5 100644 --- a/tensorflow/python/ops/variables.py +++ b/tensorflow/python/ops/variables.py @@ -2482,21 +2482,21 @@ class PartitionedVariable(object): "variable_list is not a list or tuple: %s" % variable_list) if not isinstance(partitions, (list, tuple)): raise TypeError("partitions is not a list or tuple: %s" % partitions) - if not all([p >= 1 for p in partitions]): + if not all(p >= 1 for p in partitions): raise ValueError("partition values must be positive: %s" % partitions) if not variable_list: raise ValueError("variable_list may not be empty") # pylint: disable=protected-access for v in variable_list: # Sort the variable_list lexicographically according to var offset value. - if not all([v._get_save_slice_info() is not None for v in variable_list]): + if not all(v._get_save_slice_info() is not None for v in variable_list): raise ValueError( "All variables must have a save_slice_info available: %s" % [v.name for v in variable_list]) if len(shape) != len(partitions): raise ValueError("len(shape) != len(partitions): %s vs. %s" % (shape, partitions)) - if not all([v._get_save_slice_info().full_shape == shape]): + if v._get_save_slice_info().full_shape != shape: raise ValueError( "All variables' full shapes must match shape: %s; " "but full shapes were: %s" @@ -2523,7 +2523,7 @@ class PartitionedVariable(object): return len(self._variable_list) def _partition_axes(self): - if all([p == 1 for p in self._partitions]): + if all(p == 1 for p in self._partitions): return [0] else: return [i for i, p in enumerate(self._partitions) if p > 1] diff --git a/tensorflow/python/ops/while_v2.py b/tensorflow/python/ops/while_v2.py index 5ab7bffedc7..1252c7fb036 100644 --- a/tensorflow/python/ops/while_v2.py +++ b/tensorflow/python/ops/while_v2.py @@ -509,7 +509,7 @@ def _grad_fn(ys, xs, args, func_graph): # TODO(b/118712257): Handle the case when grad_outs has None's e.g. when there # is a tf.StopGradient in the loop body. - assert all([g is not None for g in grad_outs]) + assert all(g is not None for g in grad_outs) counter = args[0] total_iters = args[1] return [counter + 1, total_iters] + grad_outs diff --git a/tensorflow/python/tools/inspect_checkpoint.py b/tensorflow/python/tools/inspect_checkpoint.py index 6504fbc1075..ea1f6aa5555 100644 --- a/tensorflow/python/tools/inspect_checkpoint.py +++ b/tensorflow/python/tools/inspect_checkpoint.py @@ -63,7 +63,7 @@ def print_tensors_in_checkpoint_file(file_name, tensor_name, all_tensors, print("It's likely that your checkpoint file has been compressed " "with SNAPPY.") if ("Data loss" in str(e) and - (any([e in file_name for e in [".index", ".meta", ".data"]]))): + any(e in file_name for e in [".index", ".meta", ".data"])): proposed_file = ".".join(file_name.split(".")[0:-1]) v2_file_error_template = """ It's likely that this is a V2 checkpoint and you need to provide the filename diff --git a/tensorflow/python/training/evaluation.py b/tensorflow/python/training/evaluation.py index 2c4eb02d533..a10178f8cfe 100644 --- a/tensorflow/python/training/evaluation.py +++ b/tensorflow/python/training/evaluation.py @@ -230,7 +230,7 @@ def _evaluate_once(checkpoint_path, hooks = list(hooks or []) if eval_ops is not None: - if any([isinstance(h, _MultiStepStopAfterNEvalsHook) for h in hooks]): + if any(isinstance(h, _MultiStepStopAfterNEvalsHook) for h in hooks): steps_per_run_variable = \ basic_session_run_hooks.get_or_create_steps_per_run_variable() update_eval_step = state_ops.assign_add( diff --git a/tensorflow/python/training/warm_starting_util.py b/tensorflow/python/training/warm_starting_util.py index 78dbb465b55..3649d313aee 100644 --- a/tensorflow/python/training/warm_starting_util.py +++ b/tensorflow/python/training/warm_starting_util.py @@ -248,7 +248,7 @@ def _warm_start_var_with_vocab(var, prev_tensor_name = _infer_var_name(var) # TODO(eddz): Fix functionality for rank-1 Variables (like FC biases). - total_v_first_axis = sum([v.get_shape().as_list()[0] for v in var]) + total_v_first_axis = sum(v.get_shape().as_list()[0] for v in var) for v in var: v_shape = v.get_shape().as_list() slice_info = v._get_save_slice_info() @@ -333,12 +333,12 @@ def _get_grouped_variables(vars_to_warm_start): ops.GraphKeys.TRAINABLE_VARIABLES, scope=vars_to_warm_start) elif isinstance(vars_to_warm_start, list): - if all([isinstance(v, str) for v in vars_to_warm_start]): + if all(isinstance(v, str) for v in vars_to_warm_start): list_of_vars = [] for v in vars_to_warm_start: list_of_vars += ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope=v) - elif all([checkpoint_utils._is_variable(v) for v in vars_to_warm_start]): # pylint: disable=protected-access + elif all(checkpoint_utils._is_variable(v) for v in vars_to_warm_start): # pylint: disable=protected-access list_of_vars = vars_to_warm_start else: raise ValueError("If `vars_to_warm_start` is a list, it must be all " diff --git a/tensorflow/tools/api/tests/api_compatibility_test.py b/tensorflow/tools/api/tests/api_compatibility_test.py index b0f3742af1a..cba6246feff 100644 --- a/tensorflow/tools/api/tests/api_compatibility_test.py +++ b/tensorflow/tools/api/tests/api_compatibility_test.py @@ -126,9 +126,9 @@ def _FilterNonCoreGoldenFiles(golden_file_list): filtered_file_list = [] filtered_package_prefixes = ['tensorflow.%s.' % p for p in _NON_CORE_PACKAGES] for f in golden_file_list: - if any([ + if any( f.rsplit('/')[-1].startswith(pre) for pre in filtered_package_prefixes - ]): + ): continue filtered_file_list.append(f) return filtered_file_list