Do not use NCCL when reducing tensors on CPUs.

PiperOrigin-RevId: 338387045
Change-Id: I9c2f4d8b9831d7102bb6d0df3d3c9ba1be3720d1
This commit is contained in:
Priya Gupta 2020-10-21 19:19:34 -07:00 committed by TensorFlower Gardener
parent 60cf96348b
commit 95a74d1a98
2 changed files with 5 additions and 2 deletions
tensorflow/python/distribute

View File

@ -803,7 +803,10 @@ class AllReduceCrossDeviceOps(CrossDeviceOps):
def reduce_implementation(self, reduce_op, per_replica_value, destinations,
options):
del options # Unused.
if _devices_match(per_replica_value, destinations):
# To use NCCL or all-reduce, source and destination devices should match,
# and none of the devices should be CPU.
if (_devices_match(per_replica_value, destinations) and
not any("cpu" in d.lower() for d in get_devices_from(destinations))):
return self._batch_all_reduce(reduce_op, [per_replica_value])[0]
else:
return self._simple_cross_replica_ops.reduce(reduce_op, per_replica_value,

View File

@ -1456,7 +1456,7 @@ class DistributedIteratorPerDeviceTest(DistributedIteratorTestBase,
input_options):
def dataset_fn(input_context): # pylint: disable=[unused-argument]
return dataset_ops.Dataset.from_tensor_slices([1, 2, 3])
return dataset_ops.Dataset.from_tensor_slices([1, 2, 3, 4])
ds = distribution.experimental_distribute_datasets_from_function(
dataset_fn, input_options)