Merge pull request #27362 from jenselo:micro_port_conv

PiperOrigin-RevId: 247806095
This commit is contained in:
TensorFlower Gardener 2019-05-12 00:38:59 -07:00
commit 955de4b44d
4 changed files with 576 additions and 0 deletions

View File

@ -13,6 +13,7 @@ load(
cc_library( cc_library(
name = "micro_ops", name = "micro_ops",
srcs = [ srcs = [
"conv.cc",
"depthwise_conv.cc", "depthwise_conv.cc",
"fully_connected.cc", "fully_connected.cc",
"pooling.cc", "pooling.cc",
@ -50,6 +51,7 @@ cc_library(
cc_library( cc_library(
name = "portable_optimized_micro_ops", name = "portable_optimized_micro_ops",
srcs = [ srcs = [
"conv.cc",
"fully_connected.cc", "fully_connected.cc",
"pooling.cc", "pooling.cc",
"portable_optimized/depthwise_conv.cc", "portable_optimized/depthwise_conv.cc",
@ -148,3 +150,16 @@ tflite_micro_cc_test(
"//tensorflow/lite/experimental/micro/testing:micro_test", "//tensorflow/lite/experimental/micro/testing:micro_test",
], ],
) )
tflite_micro_cc_test(
name = "conv_test",
srcs = [
"conv_test.cc",
],
deps = [
":all_ops_resolver",
"//tensorflow/lite/c:c_api_internal",
"//tensorflow/lite/experimental/micro:micro_framework",
"//tensorflow/lite/experimental/micro/testing:micro_test",
],
)

View File

@ -29,6 +29,9 @@ TfLiteRegistration* Micro_Register_FULLY_CONNECTED() {
TfLiteRegistration* Register_SOFTMAX(); TfLiteRegistration* Register_SOFTMAX();
TfLiteRegistration* Micro_Register_SOFTMAX() { return Register_SOFTMAX(); } TfLiteRegistration* Micro_Register_SOFTMAX() { return Register_SOFTMAX(); }
TfLiteRegistration* Register_CONV_2D();
TfLiteRegistration* Micro_Register_CONV_2D() { return Register_CONV_2D(); }
TfLiteRegistration* Register_AVERAGE_POOL_2D(); TfLiteRegistration* Register_AVERAGE_POOL_2D();
TfLiteRegistration* Micro_Register_AVERAGE_POOL_2D() { TfLiteRegistration* Micro_Register_AVERAGE_POOL_2D() {
return Register_AVERAGE_POOL_2D(); return Register_AVERAGE_POOL_2D();
@ -41,6 +44,7 @@ AllOpsResolver::AllOpsResolver() {
/* min_version */ 1, /* min_version */ 1,
/* max_version */ 2); /* max_version */ 2);
AddBuiltin(BuiltinOperator_SOFTMAX, Micro_Register_SOFTMAX()); AddBuiltin(BuiltinOperator_SOFTMAX, Micro_Register_SOFTMAX());
AddBuiltin(BuiltinOperator_CONV_2D, Micro_Register_CONV_2D());
AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D, Micro_Register_AVERAGE_POOL_2D()); AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D, Micro_Register_AVERAGE_POOL_2D());
} }

View File

@ -0,0 +1,217 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/conv.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/c_api_internal.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
namespace tflite {
namespace ops {
namespace micro {
namespace conv {
constexpr int kInputTensor = 0;
constexpr int kFilterTensor = 1;
constexpr int kBiasTensor = 2;
constexpr int kOutputTensor = 0;
// This file has 2 implementation of Conv.
const int kTensorNotAllocated = -1;
struct OpData {
TfLitePaddingValues padding;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
// The range of the fused activation layer. For example for kNone and
// uint8_t these would be 0 and 255.
int32_t output_activation_min;
int32_t output_activation_max;
};
inline PaddingType RuntimePaddingType(TfLitePadding padding) {
switch (padding) {
case TfLitePadding::kTfLitePaddingSame:
return PaddingType::kSame;
case TfLitePadding::kTfLitePaddingValid:
return PaddingType::kValid;
case TfLitePadding::kTfLitePaddingUnknown:
default:
return PaddingType::kNone;
}
}
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, int width, int height,
int filter_width, int filter_height, int out_width,
int out_height, const TfLiteType data_type,
OpData* data) {
data->padding.height =
ComputePadding(params->stride_height, params->dilation_height_factor,
height, filter_height, out_height);
data->padding.width =
ComputePadding(params->stride_width, params->dilation_width_factor, width,
filter_width, out_width);
// Note that quantized inference requires that all tensors have their
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
double real_multiplier = 0.0;
TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler(
context, input, filter, bias, output, &real_multiplier));
int exponent;
QuantizeMultiplier(real_multiplier, &data->output_multiplier, &exponent);
data->output_shift = -exponent;
CalculateActivationRangeQuantized(context, params->activation, output,
&data->output_activation_min,
&data->output_activation_max);
}
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
return nullptr;
}
void Free(TfLiteContext* context, void* buffer) {}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* im2col,
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
const int32_t input_offset = -input->params.zero_point;
const int32_t filter_offset = -filter->params.zero_point;
const int32_t output_offset = output->params.zero_point;
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.input_offset = input_offset;
op_params.weights_offset = filter_offset;
op_params.output_offset = output_offset;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = -data->output_shift;
op_params.quantized_activation_min = data->output_activation_min;
op_params.quantized_activation_max = data->output_activation_max;
reference_ops::Conv(op_params, GetTensorShape(input),
GetTensorData<uint8_t>(input), GetTensorShape(filter),
GetTensorData<uint8_t>(filter), GetTensorShape(bias),
GetTensorData<int32_t>(bias), GetTensorShape(output),
GetTensorData<uint8_t>(output), GetTensorShape(im2col),
GetTensorData<uint8_t>(im2col), nullptr);
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* im2col,
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
reference_ops::Conv(op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(filter),
GetTensorData<float>(filter), GetTensorShape(bias),
GetTensorData<float>(bias), GetTensorShape(output),
GetTensorData<float>(output), GetTensorShape(im2col),
GetTensorData<float>(im2col));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
int input_width = input->dims->data[2];
int input_height = input->dims->data[1];
int filter_width = filter->dims->data[2];
int filter_height = filter->dims->data[1];
int output_width = output->dims->data[2];
int output_height = output->dims->data[1];
OpData data;
TF_LITE_ENSURE_STATUS(CalculateOpData(
context, node, params, input_width, input_height, filter_width,
filter_height, output_width, output_height, input->type, &data));
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
EvalFloat(context, node, params, &data, input, filter, bias, nullptr,
nullptr, output);
break;
case kTfLiteUInt8:
EvalQuantized(context, node, params, &data, input, filter, bias, nullptr,
nullptr, output);
break;
default:
context->ReportError(context, "Type %d not currently supported.",
input->type);
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace conv
TfLiteRegistration* Register_CONV_2D() {
static TfLiteRegistration r = {conv::Init, conv::Free, conv::Prepare,
conv::Eval};
return &r;
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@ -0,0 +1,340 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/c_api_internal.h"
#include "tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/experimental/micro/simple_tensor_allocator.h"
#include "tensorflow/lite/experimental/micro/testing/micro_test.h"
#include "tensorflow/lite/experimental/micro/testing/test_utils.h"
namespace tflite {
namespace testing {
namespace {
void TestConvFloat(std::initializer_list<int> input_dims_data,
std::initializer_list<float> input_data,
std::initializer_list<int> filter_dims_data,
std::initializer_list<float> filter_data,
std::initializer_list<int> bias_dims_data,
std::initializer_list<float> bias_data,
std::initializer_list<int> output_dims_data,
std::initializer_list<float> expected_output_data,
TfLiteFusedActivation activation, float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* filter_dims = IntArrayFromInitializer(filter_dims_data);
TfLiteIntArray* bias_dims = IntArrayFromInitializer(bias_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
::tflite::ops::micro::AllOpsResolver resolver;
constexpr int inputs_size = 3;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateFloatTensor(input_data, input_dims, "input_tensor"),
CreateFloatTensor(filter_data, filter_dims, "filter_tensor"),
CreateFloatTensor(bias_data, bias_dims, "bias_tensor"),
CreateFloatTensor(output_data, output_dims, "output_tensor"),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, &context);
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_CONV_2D, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
TfLiteConvParams builtin_data = {
.padding = kTfLitePaddingValid,
.stride_width = 2,
.stride_height = 2,
.dilation_width_factor = 1,
.dilation_height_factor = 1,
.activation = kTfLiteActNone,
};
const char* init_data = reinterpret_cast<const char*>(&builtin_data);
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {3, 0, 1, 2};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 3};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
int temporaries_array_data[] = {0};
TfLiteIntArray* temporaries_array = IntArrayFromInts(temporaries_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = temporaries_array;
node.user_data = user_data;
node.builtin_data = reinterpret_cast<void*>(&builtin_data);
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = 0;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
void TestConvQuantized(
std::initializer_list<int> input_dims_data,
std::initializer_list<uint8_t> input_data, float input_min, float input_max,
std::initializer_list<int> filter_dims_data,
std::initializer_list<uint8_t> filter_data, float filter_min,
float filter_max, std::initializer_list<int> bias_dims_data,
std::initializer_list<int32_t> bias_data, float bias_min, float bias_max,
std::initializer_list<int> output_dims_data,
std::initializer_list<uint8_t> expected_output_data, float output_min,
float output_max, TfLiteFusedActivation activation, uint8_t* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* filter_dims = IntArrayFromInitializer(filter_dims_data);
TfLiteIntArray* bias_dims = IntArrayFromInitializer(bias_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
::tflite::ops::micro::AllOpsResolver resolver;
constexpr int inputs_size = 3;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min,
input_max),
CreateQuantizedTensor(filter_data, filter_dims, "filter_tensor",
filter_min, filter_max),
CreateQuantized32Tensor(bias_data, bias_dims, "bias_tensor", bias_min,
bias_max),
CreateQuantizedTensor(output_data, output_dims, "output_tensor",
output_min, output_max),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, &context);
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_CONV_2D, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
TfLiteConvParams builtin_data = {
.padding = kTfLitePaddingSame,
.stride_width = 2,
.stride_height = 2,
.dilation_width_factor = 1,
.dilation_height_factor = 1,
.activation = kTfLiteActNone,
};
const char* init_data = reinterpret_cast<const char*>(&builtin_data);
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {3, 0, 1, 2};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 3};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
int temporaries_array_data[] = {0};
TfLiteIntArray* temporaries_array = IntArrayFromInts(temporaries_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = temporaries_array;
node.user_data = user_data;
node.builtin_data = reinterpret_cast<void*>(&builtin_data);
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = 0;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_EQ(expected_output_data.begin()[i], output_data[i]);
}
}
} // namespace
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(SimpleTestFloat) {
const int output_dims_count = 12;
float output_data[output_dims_count];
tflite::testing::TestConvFloat({4, 2, 2, 4, 1}, // Input shape
{
// Input values
// First batch
1, 1, 1, 1, // row = 1
2, 2, 2, 2, // row = 2
// Second batch
1, 2, 3, 4, // row = 1
1, 2, 3, 4, // row = 2
},
{4, 3, 2, 2, 1}, // Filters shape
{
1, 2, 3, 4, // first 2x2 filter
-1, 1, -1, 1, // second 2x2 filter
-1, -1, 1, 1, // third 2x2 filter
},
{1, 3}, // Bias shape
{1, 2, 3}, // Bias values
{4, 2, 1, 2, 3}, // output dims
{
18, 2, 5, // first batch, left
18, 2, 5, // first batch, right
17, 4, 3, // second batch, left
37, 4, 3, // second batch, right
},
kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(InputAndFilterSameWidthHeight) {
const int output_dims_count(2);
float output_data[output_dims_count];
tflite::testing::TestConvFloat({4, 2, 2, 4, 1}, // Input shape
{
// Input values
// First batch
1, 1, 1, 1, // row = 1
2, 2, 2, 2, // row = 2
// Second batch
1, 2, 3, 4, // row = 1
1, 2, 3, 4, // row = 2
},
{4, 1, 2, 4, 1}, // Filters shape
{
// Filters values
1, 2, 3, 4, // row = 1
-1, -1, 1, 1, // row = 2
},
{1, 1}, // Bias shape
{0}, // Bias values
{4, 2, 1, 1, 1}, // output dims
{10, 34}, // output
kTfLiteActNone, output_data);
}
TF_LITE_MICRO_TEST(SimpleTestQuantized) {
using tflite::testing::F2Q;
using tflite::testing::F2Q32;
const int output_dims_count = 12;
uint8_t output_data[output_dims_count];
const float input_min = -63.5;
const float input_max = 64;
const float filter_min = -63.5;
const float filter_max = 64;
const float bias_min = 0.0f;
const float bias_max = 64.0f * (1 << 24);
const float output_min = -127;
const float output_max = 128;
tflite::testing::TestConvQuantized({4, 2, 2, 4, 1},
{
F2Q(1, input_min, input_max),
F2Q(1, input_min, input_max),
F2Q(1, input_min, input_max),
F2Q(1, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(1, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(3, input_min, input_max),
F2Q(4, input_min, input_max),
F2Q(1, input_min, input_max),
F2Q(2, input_min, input_max),
F2Q(3, input_min, input_max),
F2Q(4, input_min, input_max),
},
input_min, input_max, {4, 3, 2, 2, 1},
{
F2Q(1, filter_min, filter_max),
F2Q(2, filter_min, filter_max),
F2Q(3, filter_min, filter_max),
F2Q(4, filter_min, filter_max),
F2Q(-1, filter_min, filter_max),
F2Q(1, filter_min, filter_max),
F2Q(-1, filter_min, filter_max),
F2Q(1, filter_min, filter_max),
F2Q(-1, filter_min, filter_max),
F2Q(-1, filter_min, filter_max),
F2Q(1, filter_min, filter_max),
F2Q(1, filter_min, filter_max),
},
filter_min, filter_max, {1, 3},
{
F2Q32(1, bias_min, bias_max),
F2Q32(2, bias_min, bias_max),
F2Q32(3, bias_min, bias_max),
},
bias_min, bias_max, {4, 2, 1, 2, 3},
{
F2Q(18, output_min, output_max),
F2Q(2, output_min, output_max),
F2Q(5, output_min, output_max),
F2Q(18, output_min, output_max),
F2Q(2, output_min, output_max),
F2Q(5, output_min, output_max),
F2Q(17, output_min, output_max),
F2Q(4, output_min, output_max),
F2Q(3, output_min, output_max),
F2Q(37, output_min, output_max),
F2Q(4, output_min, output_max),
F2Q(3, output_min, output_max),
},
output_min, output_max, kTfLiteActNone,
output_data);
}
TF_LITE_MICRO_TESTS_END