Go: Update generated wrapper functions for TensorFlow ops.

PiperOrigin-RevId: 219882917
This commit is contained in:
A. Unique TensorFlower 2018-11-02 16:42:40 -07:00 committed by TensorFlower Gardener
parent 09f82cbffd
commit 937617ed6a

View File

@ -5475,6 +5475,78 @@ func OrderedMapUnstage(scope *Scope, key tf.Output, indices tf.Output, dtypes []
return values
}
// OrderedMapPeekAttr is an optional argument to OrderedMapPeek.
type OrderedMapPeekAttr func(optionalAttr)
// OrderedMapPeekCapacity sets the optional capacity attribute to value.
// If not specified, defaults to 0
//
// REQUIRES: value >= 0
func OrderedMapPeekCapacity(value int64) OrderedMapPeekAttr {
return func(m optionalAttr) {
m["capacity"] = value
}
}
// OrderedMapPeekMemoryLimit sets the optional memory_limit attribute to value.
// If not specified, defaults to 0
//
// REQUIRES: value >= 0
func OrderedMapPeekMemoryLimit(value int64) OrderedMapPeekAttr {
return func(m optionalAttr) {
m["memory_limit"] = value
}
}
// OrderedMapPeekContainer sets the optional container attribute to value.
// If not specified, defaults to ""
func OrderedMapPeekContainer(value string) OrderedMapPeekAttr {
return func(m optionalAttr) {
m["container"] = value
}
}
// OrderedMapPeekSharedName sets the optional shared_name attribute to value.
// If not specified, defaults to ""
func OrderedMapPeekSharedName(value string) OrderedMapPeekAttr {
return func(m optionalAttr) {
m["shared_name"] = value
}
}
// Op peeks at the values at the specified key. If the
//
// underlying container does not contain this key
// this op will block until it does. This Op is optimized for
// performance.
func OrderedMapPeek(scope *Scope, key tf.Output, indices tf.Output, dtypes []tf.DataType, optional ...OrderedMapPeekAttr) (values []tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{"dtypes": dtypes}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "OrderedMapPeek",
Input: []tf.Input{
key, indices,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
if scope.Err() != nil {
return
}
var idx int
var err error
if values, idx, err = makeOutputList(op, idx, "values"); err != nil {
scope.UpdateErr("OrderedMapPeek", err)
return
}
return values
}
// Returns the truth value of x OR y element-wise.
//
// *NOTE*: `LogicalOr` supports broadcasting. More about broadcasting
@ -6994,6 +7066,36 @@ func Cast(scope *Scope, x tf.Output, DstT tf.DataType, optional ...CastAttr) (y
return op.Output(0)
}
// Outputs a tensor containing the reduction across all input tensors.
//
// Outputs a tensor containing the reduction across all input tensors passed to ops
// within the same `shared_name.
//
// The graph should be constructed so if one op runs with shared_name value `c`,
// then `num_devices` ops will run with shared_name value `c`. Failure to do so
// will cause the graph execution to fail to complete.
//
// input: the input to the reduction
// data: the value of the reduction across all `num_devices` devices.
// reduction: the reduction operation to perform.
// num_devices: The number of devices participating in this reduction.
// shared_name: Identifier that shared between ops of the same reduction.
func NcclAllReduce(scope *Scope, input tf.Output, reduction string, num_devices int64, shared_name string) (data tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{"reduction": reduction, "num_devices": num_devices, "shared_name": shared_name}
opspec := tf.OpSpec{
Type: "NcclAllReduce",
Input: []tf.Input{
input,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
}
// RegexReplaceAttr is an optional argument to RegexReplace.
type RegexReplaceAttr func(optionalAttr)
@ -8971,6 +9073,32 @@ func SparseFillEmptyRows(scope *Scope, indices tf.Output, values tf.Output, dens
return op.Output(0), op.Output(1), op.Output(2), op.Output(3)
}
// Reduces `input` from `num_devices` using `reduction` to a single device.
//
// Reduces `input` from `num_devices` using `reduction` to a single device.
//
// The graph should be constructed so that all inputs have a valid device
// assignment, and the op itself is assigned one of these devices.
//
// input: The input to the reduction.
// data: the value of the reduction across all `num_devices` devices.
// reduction: the reduction operation to perform.
func NcclReduce(scope *Scope, input []tf.Output, reduction string) (data tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{"reduction": reduction}
opspec := tf.OpSpec{
Type: "NcclReduce",
Input: []tf.Input{
tf.OutputList(input),
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
}
// BiasAddGradAttr is an optional argument to BiasAddGrad.
type BiasAddGradAttr func(optionalAttr)
@ -10738,6 +10866,31 @@ func NonMaxSuppressionV2(scope *Scope, boxes tf.Output, scores tf.Output, max_ou
return op.Output(0)
}
// Converts a `RaggedTensor` into a `SparseTensor` with the same values.
//
// input=ragged.from_nested_row_splits(rt_dense_values, rt_nested_splits)
// output=SparseTensor(indices=sparse_indices, values=sparse_values,
// dense_shape=sparse_dense_shape)
//
// Arguments:
// rt_nested_splits: The `row_splits` for the `RaggedTensor`.
// rt_dense_values: The `inner_values` for the `RaggedTensor`.
//
// Returns The indices for the `SparseTensor`.The values of the `SparseTensor`.`sparse_dense_shape` is a tight bounding box of the input `RaggedTensor`.
func RaggedTensorToSparse(scope *Scope, rt_nested_splits []tf.Output, rt_dense_values tf.Output) (sparse_indices tf.Output, sparse_values tf.Output, sparse_dense_shape tf.Output) {
if scope.Err() != nil {
return
}
opspec := tf.OpSpec{
Type: "RaggedTensorToSparse",
Input: []tf.Input{
tf.OutputList(rt_nested_splits), rt_dense_values,
},
}
op := scope.AddOperation(opspec)
return op.Output(0), op.Output(1), op.Output(2)
}
// Check if the input matches the regex pattern.
//
// The input is a string tensor of any shape. The pattern is a scalar
@ -15397,78 +15550,6 @@ func SparseAdd(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf
return op.Output(0), op.Output(1), op.Output(2)
}
// OrderedMapPeekAttr is an optional argument to OrderedMapPeek.
type OrderedMapPeekAttr func(optionalAttr)
// OrderedMapPeekCapacity sets the optional capacity attribute to value.
// If not specified, defaults to 0
//
// REQUIRES: value >= 0
func OrderedMapPeekCapacity(value int64) OrderedMapPeekAttr {
return func(m optionalAttr) {
m["capacity"] = value
}
}
// OrderedMapPeekMemoryLimit sets the optional memory_limit attribute to value.
// If not specified, defaults to 0
//
// REQUIRES: value >= 0
func OrderedMapPeekMemoryLimit(value int64) OrderedMapPeekAttr {
return func(m optionalAttr) {
m["memory_limit"] = value
}
}
// OrderedMapPeekContainer sets the optional container attribute to value.
// If not specified, defaults to ""
func OrderedMapPeekContainer(value string) OrderedMapPeekAttr {
return func(m optionalAttr) {
m["container"] = value
}
}
// OrderedMapPeekSharedName sets the optional shared_name attribute to value.
// If not specified, defaults to ""
func OrderedMapPeekSharedName(value string) OrderedMapPeekAttr {
return func(m optionalAttr) {
m["shared_name"] = value
}
}
// Op peeks at the values at the specified key. If the
//
// underlying container does not contain this key
// this op will block until it does. This Op is optimized for
// performance.
func OrderedMapPeek(scope *Scope, key tf.Output, indices tf.Output, dtypes []tf.DataType, optional ...OrderedMapPeekAttr) (values []tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{"dtypes": dtypes}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "OrderedMapPeek",
Input: []tf.Input{
key, indices,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
if scope.Err() != nil {
return
}
var idx int
var err error
if values, idx, err = makeOutputList(op, idx, "values"); err != nil {
scope.UpdateErr("OrderedMapPeek", err)
return
}
return values
}
// LRNAttr is an optional argument to LRN.
type LRNAttr func(optionalAttr)
@ -22120,6 +22201,108 @@ func MatrixTriangularSolve(scope *Scope, matrix tf.Output, rhs tf.Output, option
return op.Output(0)
}
// UnicodeTranscodeAttr is an optional argument to UnicodeTranscode.
type UnicodeTranscodeAttr func(optionalAttr)
// UnicodeTranscodeErrors sets the optional errors attribute to value.
//
// value: Error handling policy when there is invalid formatting found in the input.
// The value of 'strict' will cause the operation to produce a InvalidArgument
// error on any invalid input formatting. A value of 'replace' (the default) will
// cause the operation to replace any invalid formatting in the input with the
// `replacement_char` codepoint. A value of 'ignore' will cause the operation to
// skip any invalid formatting in the input and produce no corresponding output
// character.
// If not specified, defaults to "replace"
func UnicodeTranscodeErrors(value string) UnicodeTranscodeAttr {
return func(m optionalAttr) {
m["errors"] = value
}
}
// UnicodeTranscodeReplacementChar sets the optional replacement_char attribute to value.
//
// value: The replacement character codepoint to be used in place of any invalid
// formatting in the input when `errors='replace'`. Any valid unicode codepoint may
// be used. The default value is the default unicode replacement character is
// 0xFFFD or U+65533.)
//
// Note that for UTF-8, passing a replacement character expressible in 1 byte, such
// as ' ', will preserve string alignment to the source since invalid bytes will be
// replaced with a 1-byte replacement. For UTF-16-BE and UTF-16-LE, any 1 or 2 byte
// replacement character will preserve byte alignment to the source.
// If not specified, defaults to 65533
func UnicodeTranscodeReplacementChar(value int64) UnicodeTranscodeAttr {
return func(m optionalAttr) {
m["replacement_char"] = value
}
}
// UnicodeTranscodeReplaceControlCharacters sets the optional replace_control_characters attribute to value.
//
// value: Whether to replace the C0 control characters (00-1F) with the
// `replacement_char`. Default is false.
// If not specified, defaults to false
func UnicodeTranscodeReplaceControlCharacters(value bool) UnicodeTranscodeAttr {
return func(m optionalAttr) {
m["replace_control_characters"] = value
}
}
// Transcode the input text from a source encoding to a destination encoding.
//
// The input is a string tensor of any shape. The output is a string tensor of
// the same shape containing the transcoded strings. Output strings are always
// valid unicode. If the input contains invalid encoding positions, the
// `errors` attribute sets the policy for how to deal with them. If the default
// error-handling policy is used, invalid formatting will be substituted in the
// output by the `replacement_char`. If the errors policy is to `ignore`, any
// invalid encoding positions in the input are skipped and not included in the
// output. If it set to `strict` then any invalid formatting will result in an
// InvalidArgument error.
//
// This operation can be used with `output_encoding = input_encoding` to enforce
// correct formatting for inputs even if they are already in the desired encoding.
//
// If the input is prefixed by a Byte Order Mark needed to determine encoding
// (e.g. if the encoding is UTF-16 and the BOM indicates big-endian), then that
// BOM will be consumed and not emitted into the output. If the input encoding
// is marked with an explicit endianness (e.g. UTF-16-BE), then the BOM is
// interpreted as a non-breaking-space and is preserved in the output (including
// always for UTF-8).
//
// The end result is that if the input is marked as an explicit endianness the
// transcoding is faithful to all codepoints in the source. If it is not marked
// with an explicit endianness, the BOM is not considered part of the string itself
// but as metadata, and so is not preserved in the output.
//
// Arguments:
// input: The text to be processed. Can have any shape.
// input_encoding: Text encoding of the input strings. This is any of the encodings supported
// by ICU ucnv algorithmic converters. Examples: `"UTF-16", "US ASCII", "UTF-8"`.
// output_encoding: The unicode encoding to use in the output. Must be one of
// `"UTF-8", "UTF-16-BE", "UTF-32-BE"`. Multi-byte encodings will be big-endian.
//
// Returns A string tensor containing unicode text encoded using `output_encoding`.
func UnicodeTranscode(scope *Scope, input tf.Output, input_encoding string, output_encoding string, optional ...UnicodeTranscodeAttr) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{"input_encoding": input_encoding, "output_encoding": output_encoding}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "UnicodeTranscode",
Input: []tf.Input{
input,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
}
// Computes inverse hyperbolic sine of x element-wise.
func Asinh(scope *Scope, x tf.Output) (y tf.Output) {
if scope.Err() != nil {
@ -24464,6 +24647,33 @@ func Real(scope *Scope, input tf.Output, optional ...RealAttr) (output tf.Output
return op.Output(0)
}
// Sends `input` to all devices that are connected to the output.
//
// Sends `input` to all devices that are connected to the output.
//
// The graph should be constructed so that all ops connected to the output have a
// valid device assignment, and the op itself is assigned one of these devices.
//
// input: The input to the broadcast.
// output: The same as input.
// shape: The shape of the input tensor.
//
func NcclBroadcast(scope *Scope, input tf.Output, shape tf.Shape) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{"shape": shape}
opspec := tf.OpSpec{
Type: "NcclBroadcast",
Input: []tf.Input{
input,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
}
// ResizeAreaAttr is an optional argument to ResizeArea.
type ResizeAreaAttr func(optionalAttr)