[tf.data] Forward compatibility cleanup.

PiperOrigin-RevId: 261816972
This commit is contained in:
Jiri Simsa 2019-08-05 18:43:58 -07:00 committed by TensorFlower Gardener
parent 2d6cca0122
commit 9239c61f20
23 changed files with 180 additions and 458 deletions

View File

@ -362,7 +362,7 @@ class ThreadUtilizationStatsTest(stats_dataset_test_base.StatsDatasetTestBase):
num_output = 100 // 16 + 1
self.parallelCallsStats(
dataset_fn, {"ExperimentalMapAndBatchDataset"},
dataset_fn, {"MapAndBatchDataset"},
num_output,
check_elements=False,
function_processing_time=True)
@ -391,7 +391,7 @@ class FeatureStatsDatasetTest(
num_output = total_records // batch_size + 1
self.parallelCallsStats(
dataset_fn, {"ExperimentalParseExampleDataset"},
dataset_fn, {"ParseExampleDataset"},
num_output,
check_elements=False)
@ -409,19 +409,19 @@ class FeatureStatsDatasetTest(
handle = self.getHandle(aggregator)
self.assertStatisticsHasCount(
handle,
self.regexForNodeName("record_stats::ExperimentalParseExampleDataset",
self.regexForNodeName("record_stats::ParseExampleDataset",
"features_count"), total_records)
self.assertStatisticsHasCount(
handle,
self.regexForNodeName("record_stats::ExperimentalParseExampleDataset",
self.regexForNodeName("record_stats::ParseExampleDataset",
"feature_values_count"), total_records)
self.assertStatisticsHasSum(
handle,
self.regexForNodeName("record_stats::ExperimentalParseExampleDataset",
self.regexForNodeName("record_stats::ParseExampleDataset",
"features_count"), total_records * 4)
self.assertStatisticsHasSum(
handle,
self.regexForNodeName("record_stats::ExperimentalParseExampleDataset",
self.regexForNodeName("record_stats::ParseExampleDataset",
"feature_values_count"),
self._sum_keywords(1) * num_epochs + 3 * total_records)

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import convert
from tensorflow.python.data.util import nest
@ -247,18 +246,11 @@ class _DenseToSparseBatchDataset(dataset_ops.UnaryDataset):
tensor_shape.TensorShape([None]).concatenate(self._row_shape),
dataset_ops.get_legacy_output_types(input_dataset))
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.dense_to_sparse_batch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._batch_size,
row_shape=convert.partial_shape_to_tensor(self._row_shape),
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_dense_to_sparse_batch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._batch_size,
row_shape=convert.partial_shape_to_tensor(self._row_shape),
**self._flat_structure)
variant_tensor = ged_ops.dense_to_sparse_batch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._batch_size,
row_shape=convert.partial_shape_to_tensor(self._row_shape),
**self._flat_structure)
super(_DenseToSparseBatchDataset, self).__init__(input_dataset,
variant_tensor)
@ -302,26 +294,15 @@ class _MapAndBatchDataset(dataset_ops.UnaryDataset):
lambda component_spec: component_spec._batch(None),
self._map_func.output_structure)
# pylint: enable=protected-access
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.map_and_batch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
f=self._map_func.function,
batch_size=self._batch_size_t,
num_parallel_calls=self._num_parallel_calls_t,
drop_remainder=self._drop_remainder_t,
preserve_cardinality=True,
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_map_and_batch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
f=self._map_func.function,
batch_size=self._batch_size_t,
num_parallel_calls=self._num_parallel_calls_t,
drop_remainder=self._drop_remainder_t,
preserve_cardinality=True,
**self._flat_structure)
variant_tensor = ged_ops.map_and_batch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
f=self._map_func.function,
batch_size=self._batch_size_t,
num_parallel_calls=self._num_parallel_calls_t,
drop_remainder=self._drop_remainder_t,
preserve_cardinality=True,
**self._flat_structure)
super(_MapAndBatchDataset, self).__init__(input_dataset, variant_tensor)
def _functions(self):

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.ops import gen_experimental_dataset_ops as ged_ops
from tensorflow.python.util.tf_export import tf_export
@ -49,7 +48,4 @@ def cardinality(dataset):
constant `INFINITE_CARDINALITY` and `UNKNOWN_CARDINALITY` respectively.
"""
if compat.forward_compatible(2019, 8, 3):
return ged_ops.dataset_cardinality(dataset._variant_tensor) # pylint: disable=protected-access
else:
return ged_ops.experimental_dataset_cardinality(dataset._variant_tensor) # pylint: disable=protected-access
return ged_ops.dataset_cardinality(dataset._variant_tensor) # pylint: disable=protected-access

View File

@ -49,18 +49,11 @@ class _AutoShardDataset(dataset_ops.UnaryDataset):
self._input_dataset = input_dataset
self._element_spec = input_dataset.element_spec
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.auto_shard_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
index=index,
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_auto_shard_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
index=index,
**self._flat_structure)
variant_tensor = ged_ops.auto_shard_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
index=index,
**self._flat_structure)
super(_AutoShardDataset, self).__init__(input_dataset, variant_tensor)
@property
@ -112,13 +105,8 @@ class _RebatchDataset(dataset_ops.UnaryDataset):
num_workers=num_workers,
use_fallback=use_fallback,
**self._flat_structure)
elif compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.rebatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_rebatch_dataset(
variant_tensor = ged_ops.rebatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
**self._flat_structure)

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.ops import gen_experimental_dataset_ops
from tensorflow.python.util.tf_export import tf_export
@ -60,14 +59,8 @@ class _IgnoreErrorsDataset(dataset_ops.UnaryUnchangedStructureDataset):
def __init__(self, input_dataset):
"""See `Dataset.ignore_errors()` for details."""
self._input_dataset = input_dataset
if compat.forward_compatible(2019, 8, 3):
variant_tensor = (
gen_experimental_dataset_ops.ignore_errors_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure))
else:
variant_tensor = (
gen_experimental_dataset_ops.experimental_ignore_errors_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure))
variant_tensor = (
gen_experimental_dataset_ops.ignore_errors_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure))
super(_IgnoreErrorsDataset, self).__init__(input_dataset, variant_tensor)

View File

@ -19,7 +19,6 @@ from __future__ import print_function
import numpy as np
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import nest
from tensorflow.python.data.util import structure
@ -255,30 +254,17 @@ class _GroupByReducerDataset(dataset_ops.UnaryDataset):
self._make_init_func(reducer.init_func)
self._make_reduce_func(reducer.reduce_func, input_dataset)
self._make_finalize_func(reducer.finalize_func)
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.experimental_group_by_reducer_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._key_func.function.captured_inputs,
self._init_func.function.captured_inputs,
self._reduce_func.function.captured_inputs,
self._finalize_func.function.captured_inputs,
key_func=self._key_func.function,
init_func=self._init_func.function,
reduce_func=self._reduce_func.function,
finalize_func=self._finalize_func.function,
**self._flat_structure)
else:
variant_tensor = ged_ops.group_by_reducer_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._key_func.function.captured_inputs,
self._init_func.function.captured_inputs,
self._reduce_func.function.captured_inputs,
self._finalize_func.function.captured_inputs,
key_func=self._key_func.function,
init_func=self._init_func.function,
reduce_func=self._reduce_func.function,
finalize_func=self._finalize_func.function,
**self._flat_structure)
variant_tensor = ged_ops.experimental_group_by_reducer_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._key_func.function.captured_inputs,
self._init_func.function.captured_inputs,
self._reduce_func.function.captured_inputs,
self._finalize_func.function.captured_inputs,
key_func=self._key_func.function,
init_func=self._init_func.function,
reduce_func=self._reduce_func.function,
finalize_func=self._finalize_func.function,
**self._flat_structure)
super(_GroupByReducerDataset, self).__init__(input_dataset, variant_tensor)
def _make_key_func(self, key_func, input_dataset):
@ -390,26 +376,15 @@ class _GroupByWindowDataset(dataset_ops.UnaryDataset):
self._make_key_func(key_func, input_dataset)
self._make_reduce_func(reduce_func, input_dataset)
self._make_window_size_func(window_size_func)
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.group_by_window_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._key_func.function.captured_inputs,
self._reduce_func.function.captured_inputs,
self._window_size_func.function.captured_inputs,
key_func=self._key_func.function,
reduce_func=self._reduce_func.function,
window_size_func=self._window_size_func.function,
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_group_by_window_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._key_func.function.captured_inputs,
self._reduce_func.function.captured_inputs,
self._window_size_func.function.captured_inputs,
key_func=self._key_func.function,
reduce_func=self._reduce_func.function,
window_size_func=self._window_size_func.function,
**self._flat_structure)
variant_tensor = ged_ops.group_by_window_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._key_func.function.captured_inputs,
self._reduce_func.function.captured_inputs,
self._window_size_func.function.captured_inputs,
key_func=self._key_func.function,
reduce_func=self._reduce_func.function,
window_size_func=self._window_size_func.function,
**self._flat_structure)
super(_GroupByWindowDataset, self).__init__(input_dataset, variant_tensor)
def _make_window_size_func(self, window_size_func):

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.experimental.ops import random_ops
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import readers
@ -127,19 +126,11 @@ class _DirectedInterleaveDataset(dataset_ops.Dataset):
def _as_variant_tensor(self):
# pylint: disable=protected-access
if compat.forward_compatible(2019, 8, 3):
return (
gen_experimental_dataset_ops.directed_interleave_dataset(
self._selector_input._variant_tensor,
[data_input._variant_tensor for data_input in self._data_inputs],
**self._flat_structure))
else:
return (
gen_experimental_dataset_ops.experimental_directed_interleave_dataset(
self._selector_input._variant_tensor,
[data_input._variant_tensor for data_input in self._data_inputs],
**self._flat_structure))
# pylint: enable=protected-access
return (
gen_experimental_dataset_ops.directed_interleave_dataset(
self._selector_input._variant_tensor,
[data_input._variant_tensor for data_input in self._data_inputs],
**self._flat_structure))
def _inputs(self):
return [self._selector_input] + self._data_inputs

View File

@ -18,7 +18,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
@ -32,11 +31,7 @@ class MatchingFilesDataset(dataset_ops.DatasetSource):
def __init__(self, patterns):
self._patterns = ops.convert_to_tensor(
patterns, dtype=dtypes.string, name="patterns")
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.matching_files_dataset(self._patterns)
else:
variant_tensor = ged_ops.experimental_matching_files_dataset(
self._patterns)
variant_tensor = ged_ops.matching_files_dataset(self._patterns)
super(MatchingFilesDataset, self).__init__(variant_tensor)
@property

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
@ -105,18 +104,11 @@ class _AssertNextDataset(dataset_ops.UnaryUnchangedStructureDataset):
raise ValueError("At least one transformation should be specified")
self._transformations = ops.convert_to_tensor(
transformations, dtype=dtypes.string, name="transformations")
if compat.forward_compatible(2019, 8, 3):
variant_tensor = (
gen_experimental_dataset_ops.assert_next_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._transformations,
**self._flat_structure))
else:
variant_tensor = (
gen_experimental_dataset_ops.experimental_assert_next_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._transformations,
**self._flat_structure))
variant_tensor = (
gen_experimental_dataset_ops.assert_next_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._transformations,
**self._flat_structure))
super(_AssertNextDataset, self).__init__(input_dataset, variant_tensor)
@ -126,16 +118,10 @@ class _NonSerializableDataset(dataset_ops.UnaryUnchangedStructureDataset):
def __init__(self, input_dataset):
"""See `non_serializable()` for details."""
self._input_dataset = input_dataset
if compat.forward_compatible(2019, 8, 3):
variant_tensor = (
gen_experimental_dataset_ops.non_serializable_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure))
else:
variant_tensor = (
gen_experimental_dataset_ops.experimental_non_serializable_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure))
variant_tensor = (
gen_experimental_dataset_ops.non_serializable_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure))
super(_NonSerializableDataset, self).__init__(input_dataset, variant_tensor)
@ -171,18 +157,11 @@ class _ChooseFastestDataset(dataset_ops.DatasetV2):
"""
self._datasets = list(datasets)
self._element_spec = self._datasets[0].element_spec
if compat.forward_compatible(2019, 8, 3):
variant_tensor = (
gen_experimental_dataset_ops.choose_fastest_dataset(
[dataset._variant_tensor for dataset in self._datasets], # pylint: disable=protected-access
num_experiments=num_experiments,
**self._flat_structure))
else:
variant_tensor = (
gen_experimental_dataset_ops.experimental_choose_fastest_dataset(
[dataset._variant_tensor for dataset in self._datasets], # pylint: disable=protected-access
num_experiments=num_experiments,
**self._flat_structure))
variant_tensor = (
gen_experimental_dataset_ops.choose_fastest_dataset(
[dataset._variant_tensor for dataset in self._datasets], # pylint: disable=protected-access
num_experiments=num_experiments,
**self._flat_structure))
super(_ChooseFastestDataset, self).__init__(variant_tensor)
def _inputs(self):

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import structure
from tensorflow.python.framework import dtypes
@ -81,28 +80,16 @@ class _ParseExampleDataset(dataset_ops.UnaryDataset):
self._element_spec = structure.convert_legacy_structure(
output_types, output_shapes, output_classes)
if compat.forward_compatible(2019, 8, 3):
variant_tensor = (
gen_experimental_dataset_ops.parse_example_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._num_parallel_calls,
self._dense_defaults,
self._sparse_keys,
self._dense_keys,
self._sparse_types,
self._dense_shapes,
**self._flat_structure))
else:
variant_tensor = (
gen_experimental_dataset_ops.experimental_parse_example_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._num_parallel_calls,
self._dense_defaults,
self._sparse_keys,
self._dense_keys,
self._sparse_types,
self._dense_shapes,
**self._flat_structure))
variant_tensor = (
gen_experimental_dataset_ops.parse_example_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._num_parallel_calls,
self._dense_defaults,
self._sparse_keys,
self._dense_keys,
self._sparse_types,
self._dense_shapes,
**self._flat_structure))
super(_ParseExampleDataset, self).__init__(input_dataset, variant_tensor)
@property

View File

@ -19,7 +19,6 @@ from __future__ import print_function
import functools
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import random_seed
from tensorflow.python.framework import dtypes
@ -35,12 +34,8 @@ class RandomDatasetV2(dataset_ops.DatasetSource):
def __init__(self, seed=None):
"""A `Dataset` of pseudorandom values."""
self._seed, self._seed2 = random_seed.get_seed(seed)
if compat.forward_compatible(2019, 8, 3):
variant_tensor = gen_experimental_dataset_ops.random_dataset(
seed=self._seed, seed2=self._seed2, **self._flat_structure)
else:
variant_tensor = gen_experimental_dataset_ops.experimental_random_dataset(
seed=self._seed, seed2=self._seed2, **self._flat_structure)
variant_tensor = gen_experimental_dataset_ops.random_dataset(
seed=self._seed, seed2=self._seed2, **self._flat_structure)
super(RandomDatasetV2, self).__init__(variant_tensor)
@property

View File

@ -19,12 +19,11 @@ from __future__ import print_function
import collections
import csv
import gzip
import functools
import gzip
import numpy as np
from tensorflow.python.compat import compat
from tensorflow.python.data.experimental.ops import batching
from tensorflow.python.data.experimental.ops import error_ops
from tensorflow.python.data.experimental.ops import interleave_ops
@ -687,30 +686,17 @@ class CsvDatasetV2(dataset_ops.DatasetSource):
)
self._element_spec = tuple(
tensor_spec.TensorSpec([], d.dtype) for d in self._record_defaults)
if compat.forward_compatible(2019, 8, 3):
variant_tensor = gen_experimental_dataset_ops.csv_dataset(
filenames=self._filenames,
record_defaults=self._record_defaults,
buffer_size=self._buffer_size,
header=self._header,
output_shapes=self._flat_shapes,
field_delim=self._field_delim,
use_quote_delim=self._use_quote_delim,
na_value=self._na_value,
select_cols=self._select_cols,
compression_type=self._compression_type)
else:
variant_tensor = gen_experimental_dataset_ops.experimental_csv_dataset(
filenames=self._filenames,
record_defaults=self._record_defaults,
buffer_size=self._buffer_size,
header=self._header,
output_shapes=self._flat_shapes,
field_delim=self._field_delim,
use_quote_delim=self._use_quote_delim,
na_value=self._na_value,
select_cols=self._select_cols,
compression_type=self._compression_type)
variant_tensor = gen_experimental_dataset_ops.csv_dataset(
filenames=self._filenames,
record_defaults=self._record_defaults,
buffer_size=self._buffer_size,
header=self._header,
output_shapes=self._flat_shapes,
field_delim=self._field_delim,
use_quote_delim=self._use_quote_delim,
na_value=self._na_value,
select_cols=self._select_cols,
compression_type=self._compression_type)
super(CsvDatasetV2, self).__init__(variant_tensor)
@property
@ -993,14 +979,9 @@ class SqlDatasetV2(dataset_ops.DatasetSource):
query, dtype=dtypes.string, name="query")
self._element_spec = nest.map_structure(
lambda dtype: tensor_spec.TensorSpec([], dtype), output_types)
if compat.forward_compatible(2019, 8, 3):
variant_tensor = gen_experimental_dataset_ops.sql_dataset(
self._driver_name, self._data_source_name, self._query,
**self._flat_structure)
else:
variant_tensor = gen_experimental_dataset_ops.experimental_sql_dataset(
self._driver_name, self._data_source_name, self._query,
**self._flat_structure)
variant_tensor = gen_experimental_dataset_ops.sql_dataset(
self._driver_name, self._data_source_name, self._query,
**self._flat_structure)
super(SqlDatasetV2, self).__init__(variant_tensor)
@property

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import nest
from tensorflow.python.data.util import structure
@ -121,22 +120,13 @@ class _ScanDataset(dataset_ops.UnaryDataset):
self._scan_func = wrapped_func
self._scan_func.function.add_to_graph(ops.get_default_graph())
# pylint: disable=protected-access
if compat.forward_compatible(2019, 8, 3):
variant_tensor = gen_experimental_dataset_ops.scan_dataset(
self._input_dataset._variant_tensor,
structure.to_tensor_list(self._state_structure, self._initial_state),
self._scan_func.function.captured_inputs,
f=self._scan_func.function,
preserve_cardinality=True,
**self._flat_structure)
else:
variant_tensor = gen_experimental_dataset_ops.experimental_scan_dataset(
self._input_dataset._variant_tensor,
structure.to_tensor_list(self._state_structure, self._initial_state),
self._scan_func.function.captured_inputs,
f=self._scan_func.function,
preserve_cardinality=True,
**self._flat_structure)
variant_tensor = gen_experimental_dataset_ops.scan_dataset(
self._input_dataset._variant_tensor,
structure.to_tensor_list(self._state_structure, self._initial_state),
self._scan_func.function.captured_inputs,
f=self._scan_func.function,
preserve_cardinality=True,
**self._flat_structure)
super(_ScanDataset, self).__init__(input_dataset, variant_tensor)
def _functions(self):

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.ops import gen_experimental_dataset_ops
@ -28,16 +27,10 @@ class _SleepDataset(dataset_ops.UnaryUnchangedStructureDataset):
def __init__(self, input_dataset, sleep_microseconds):
self._input_dataset = input_dataset
self._sleep_microseconds = sleep_microseconds
if compat.forward_compatible(2019, 8, 3):
variant_tensor = gen_experimental_dataset_ops.sleep_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._sleep_microseconds,
**self._flat_structure)
else:
variant_tensor = gen_experimental_dataset_ops.experimental_sleep_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._sleep_microseconds,
**self._flat_structure)
variant_tensor = gen_experimental_dataset_ops.sleep_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._sleep_microseconds,
**self._flat_structure)
super(_SleepDataset, self).__init__(input_dataset, variant_tensor)

View File

@ -19,7 +19,6 @@ from __future__ import print_function
import tempfile
from tensorflow.python.compat import compat
from tensorflow.python.ops import gen_experimental_dataset_ops as ged_ops
from tensorflow.python.ops import summary_ops_v2
from tensorflow.python.util.tf_export import tf_export
@ -126,10 +125,7 @@ class StatsAggregatorV1(object):
def __init__(self):
"""Creates a `StatsAggregator`."""
if compat.forward_compatible(2019, 8, 3):
self._resource = ged_ops.stats_aggregator_handle()
else:
self._resource = ged_ops.experimental_stats_aggregator_handle()
self._resource = ged_ops.stats_aggregator_handle()
def get_summary(self):
"""Returns a string `tf.Tensor` that summarizes the aggregated statistics.
@ -141,10 +137,7 @@ class StatsAggregatorV1(object):
Returns:
A scalar string `tf.Tensor` that summarizes the aggregated statistics.
"""
if compat.forward_compatible(2019, 8, 3):
return ged_ops.stats_aggregator_summary(self._resource)
else:
return ged_ops.experimental_stats_aggregator_summary(self._resource)
return ged_ops.stats_aggregator_summary(self._resource)
# TODO(b/116314787): Change this to StatsAggregatorV2 when we have stable

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
@ -66,14 +65,8 @@ def bytes_produced_stats(tag):
"""
def _apply_fn(dataset):
if compat.forward_compatible(2019, 8, 3):
return _StatsDataset(
dataset, gen_experimental_dataset_ops.bytes_produced_stats_dataset,
tag)
else:
return _StatsDataset(
dataset, gen_experimental_dataset_ops
.experimental_bytes_produced_stats_dataset, tag)
return _StatsDataset(
dataset, gen_experimental_dataset_ops.bytes_produced_stats_dataset, tag)
return _apply_fn
@ -95,14 +88,8 @@ def latency_stats(tag):
"""
def _apply_fn(dataset):
if compat.forward_compatible(2019, 8, 3):
return _StatsDataset(
dataset,
gen_experimental_dataset_ops.latency_stats_dataset, tag)
else:
return _StatsDataset(
dataset,
gen_experimental_dataset_ops.experimental_latency_stats_dataset, tag)
return _StatsDataset(
dataset, gen_experimental_dataset_ops.latency_stats_dataset, tag)
return _apply_fn

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import tensor_spec
@ -42,18 +41,11 @@ class _TakeWhileDataset(dataset_ops.UnaryUnchangedStructureDataset):
raise ValueError("`predicate` must return a scalar boolean tensor.")
self._predicate = wrapped_func
if compat.forward_compatible(2019, 8, 3):
var_tensor = gen_experimental_dataset_ops.take_while_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
other_arguments=self._predicate.function.captured_inputs,
predicate=self._predicate.function,
**self._flat_structure)
else:
var_tensor = gen_experimental_dataset_ops.experimental_take_while_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
other_arguments=self._predicate.function.captured_inputs,
predicate=self._predicate.function,
**self._flat_structure)
var_tensor = gen_experimental_dataset_ops.take_while_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
other_arguments=self._predicate.function.captured_inputs,
predicate=self._predicate.function,
**self._flat_structure)
super(_TakeWhileDataset, self).__init__(input_dataset, var_tensor)
def _functions(self):

View File

@ -19,7 +19,6 @@ from __future__ import print_function
import threading
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.eager import context
from tensorflow.python.ops import gen_experimental_dataset_ops as ged_ops
@ -47,31 +46,18 @@ class PrivateThreadPool(object):
"""Creates a `PrivateThreadPool` with the given number of threads."""
if context.executing_eagerly():
shared_name = _generate_shared_name("privatethreadpool")
if compat.forward_compatible(2019, 8, 3):
self._resource = ged_ops.thread_pool_handle(
num_threads=num_threads,
max_intra_op_parallelism=max_intra_op_parallelism,
display_name=display_name,
shared_name=shared_name)
else:
self._resource = ged_ops.experimental_thread_pool_handle(
num_threads=num_threads,
max_intra_op_parallelism=max_intra_op_parallelism,
display_name=display_name,
shared_name=shared_name)
self._resource = ged_ops.thread_pool_handle(
num_threads=num_threads,
max_intra_op_parallelism=max_intra_op_parallelism,
display_name=display_name,
shared_name=shared_name)
self._resource_deleter = resource_variable_ops.EagerResourceDeleter(
handle=self._resource, handle_device=context.context().device_name)
else:
if compat.forward_compatible(2019, 8, 3):
self._resource = ged_ops.thread_pool_handle(
num_threads=num_threads,
max_intra_op_parallelism=max_intra_op_parallelism,
display_name=display_name)
else:
self._resource = ged_ops.experimental_thread_pool_handle(
num_threads=num_threads,
max_intra_op_parallelism=max_intra_op_parallelism,
display_name=display_name)
self._resource = ged_ops.thread_pool_handle(
num_threads=num_threads,
max_intra_op_parallelism=max_intra_op_parallelism,
display_name=display_name)
class _ThreadPoolDataset(dataset_ops.UnaryUnchangedStructureDataset):
@ -80,16 +66,10 @@ class _ThreadPoolDataset(dataset_ops.UnaryUnchangedStructureDataset):
def __init__(self, input_dataset, thread_pool):
self._input_dataset = input_dataset
self._thread_pool = thread_pool
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.thread_pool_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._thread_pool._resource, # pylint: disable=protected-access
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_thread_pool_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._thread_pool._resource, # pylint: disable=protected-access
**self._flat_structure)
variant_tensor = ged_ops.thread_pool_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._thread_pool._resource, # pylint: disable=protected-access
**self._flat_structure)
super(_ThreadPoolDataset, self).__init__(input_dataset, variant_tensor)

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import gen_experimental_dataset_ops
@ -60,12 +59,7 @@ class _UniqueDataset(dataset_ops.UnaryUnchangedStructureDataset):
raise TypeError(
"`tf.data.experimental.unique()` only supports inputs with a single "
"`tf.int32`, `tf.int64`, or `tf.string` component.")
if compat.forward_compatible(2019, 8, 3):
variant_tensor = gen_experimental_dataset_ops.unique_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure)
else:
variant_tensor = gen_experimental_dataset_ops.experimental_unique_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure)
variant_tensor = gen_experimental_dataset_ops.unique_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure)
super(_UniqueDataset, self).__init__(input_dataset, variant_tensor)

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import convert
from tensorflow.python.framework import dtypes
@ -84,9 +83,5 @@ class TFRecordWriter(object):
"produces shape {0} and types {1}".format(
dataset_ops.get_legacy_output_shapes(dataset),
dataset_ops.get_legacy_output_types(dataset)))
if compat.forward_compatible(2019, 8, 3):
return gen_experimental_dataset_ops.dataset_to_tf_record(
dataset._variant_tensor, self._filename, self._compression_type) # pylint: disable=protected-access
else:
return gen_experimental_dataset_ops.experimental_dataset_to_tf_record(
dataset._variant_tensor, self._filename, self._compression_type) # pylint: disable=protected-access
return gen_experimental_dataset_ops.dataset_to_tf_record(
dataset._variant_tensor, self._filename, self._compression_type) # pylint: disable=protected-access

View File

@ -31,7 +31,6 @@ from six.moves import queue as Queue # pylint: disable=redefined-builtin
from tensorflow.core.framework import graph_pb2
from tensorflow.python import tf2
from tensorflow.python.compat import compat
from tensorflow.python.data.experimental.ops import distribute_options
from tensorflow.python.data.experimental.ops import optimization_options
from tensorflow.python.data.experimental.ops import stats_options
@ -1743,12 +1742,8 @@ class DatasetV1(DatasetV2):
dataset = self._apply_options()
if shared_name is None:
shared_name = ""
if compat.forward_compatible(2018, 8, 3):
iterator_resource = gen_dataset_ops.iterator_v2(
container="", shared_name=shared_name, **self._flat_structure)
else:
iterator_resource = gen_dataset_ops.iterator(
container="", shared_name=shared_name, **self._flat_structure)
iterator_resource = gen_dataset_ops.iterator_v2(
container="", shared_name=shared_name, **self._flat_structure)
with ops.colocate_with(iterator_resource):
initializer = gen_dataset_ops.make_iterator(
dataset._variant_tensor, # pylint: disable=protected-access
@ -3755,20 +3750,12 @@ class _SetStatsAggregatorDataset(UnaryUnchangedStructureDataset):
self._stats_aggregator = aggregator
self._prefix = prefix
self._counter_prefix = counter_prefix
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.set_stats_aggregator_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._stats_aggregator._resource, # pylint: disable=protected-access
self._prefix,
self._counter_prefix,
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_set_stats_aggregator_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._stats_aggregator._resource, # pylint: disable=protected-access
self._prefix,
self._counter_prefix,
**self._flat_structure)
variant_tensor = ged_ops.set_stats_aggregator_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._stats_aggregator._resource, # pylint: disable=protected-access
self._prefix,
self._counter_prefix,
**self._flat_structure)
super(_SetStatsAggregatorDataset, self).__init__(input_dataset,
variant_tensor)
@ -3782,16 +3769,10 @@ class _MaxIntraOpParallelismDataset(UnaryUnchangedStructureDataset):
max_intra_op_parallelism,
dtype=dtypes.int64,
name="max_intra_op_parallelism")
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.max_intra_op_parallelism_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._max_intra_op_parallelism,
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_max_intra_op_parallelism_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._max_intra_op_parallelism,
**self._flat_structure)
variant_tensor = ged_ops.max_intra_op_parallelism_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._max_intra_op_parallelism,
**self._flat_structure)
super(_MaxIntraOpParallelismDataset, self).__init__(input_dataset,
variant_tensor)
@ -3803,16 +3784,10 @@ class _PrivateThreadPoolDataset(UnaryUnchangedStructureDataset):
self._input_dataset = input_dataset
self._num_threads = ops.convert_to_tensor(
num_threads, dtype=dtypes.int64, name="num_threads")
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.private_thread_pool_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._num_threads,
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_private_thread_pool_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._num_threads,
**self._flat_structure)
variant_tensor = ged_ops.private_thread_pool_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._num_threads,
**self._flat_structure)
super(_PrivateThreadPoolDataset, self).__init__(input_dataset,
variant_tensor)
@ -3851,14 +3826,9 @@ class _UnbatchDataset(UnaryDataset):
self._structure = nest.map_structure(
lambda component_spec: component_spec._unbatch(), # pylint: disable=protected-access
get_structure(input_dataset))
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.unbatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_unbatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure)
variant_tensor = ged_ops.unbatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure)
super(_UnbatchDataset, self).__init__(input_dataset, variant_tensor)
@property

View File

@ -20,7 +20,6 @@ from __future__ import print_function
import threading
import warnings
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import optional_ops
from tensorflow.python.data.util import nest
from tensorflow.python.data.util import structure
@ -201,29 +200,22 @@ class Iterator(trackable.Trackable):
output_types, output_shapes, output_classes)
if shared_name is None:
shared_name = ""
if compat.forward_compatible(2018, 8, 3):
if _device_stack_is_empty():
with ops.device("/cpu:0"):
iterator_resource = gen_dataset_ops.iterator_v2(
container="",
shared_name=shared_name,
output_types=structure.get_flat_tensor_types(
output_structure),
output_shapes=structure.get_flat_tensor_shapes(
output_structure))
else:
if _device_stack_is_empty():
with ops.device("/cpu:0"):
iterator_resource = gen_dataset_ops.iterator_v2(
container="",
shared_name=shared_name,
output_types=structure.get_flat_tensor_types(output_structure),
output_types=structure.get_flat_tensor_types(
output_structure),
output_shapes=structure.get_flat_tensor_shapes(
output_structure))
else:
iterator_resource = gen_dataset_ops.iterator(
iterator_resource = gen_dataset_ops.iterator_v2(
container="",
shared_name=shared_name,
output_types=structure.get_flat_tensor_types(output_structure),
output_shapes=structure.get_flat_tensor_shapes(output_structure))
output_shapes=structure.get_flat_tensor_shapes(
output_structure))
return Iterator(iterator_resource, None, output_types, output_shapes,
output_classes)
@ -291,20 +283,14 @@ class Iterator(trackable.Trackable):
output_structure = structure.convert_legacy_structure(
output_types, output_shapes, output_classes)
string_handle = ops.convert_to_tensor(string_handle, dtype=dtypes.string)
if compat.forward_compatible(2018, 8, 3):
if _device_stack_is_empty():
with ops.device("/cpu:0"):
iterator_resource = gen_dataset_ops.iterator_from_string_handle_v2(
string_handle,
output_types=structure.get_flat_tensor_types(output_structure),
output_shapes=structure.get_flat_tensor_shapes(output_structure))
else:
if _device_stack_is_empty():
with ops.device("/cpu:0"):
iterator_resource = gen_dataset_ops.iterator_from_string_handle_v2(
string_handle,
output_types=structure.get_flat_tensor_types(output_structure),
output_shapes=structure.get_flat_tensor_shapes(output_structure))
else:
iterator_resource = gen_dataset_ops.iterator_from_string_handle(
iterator_resource = gen_dataset_ops.iterator_from_string_handle_v2(
string_handle,
output_types=structure.get_flat_tensor_types(output_structure),
output_shapes=structure.get_flat_tensor_shapes(output_structure))

View File

@ -17,7 +17,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.compat import compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import convert
from tensorflow.python.framework import dtypes
@ -239,28 +238,16 @@ class ParallelInterleaveDataset(dataset_ops.UnaryDataset):
"prefetch_input_elements",
prefetch_input_elements,
argument_default=2 * cycle_length)
if compat.forward_compatible(2019, 8, 3):
variant_tensor = ged_ops.parallel_interleave_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
self._cycle_length,
self._block_length,
self._sloppy,
self._buffer_output_elements,
self._prefetch_input_elements,
f=self._map_func.function,
**self._flat_structure)
else:
variant_tensor = ged_ops.experimental_parallel_interleave_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
self._cycle_length,
self._block_length,
self._sloppy,
self._buffer_output_elements,
self._prefetch_input_elements,
f=self._map_func.function,
**self._flat_structure)
variant_tensor = ged_ops.parallel_interleave_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
self._cycle_length,
self._block_length,
self._sloppy,
self._buffer_output_elements,
self._prefetch_input_elements,
f=self._map_func.function,
**self._flat_structure)
super(ParallelInterleaveDataset, self).__init__(input_dataset,
variant_tensor)
@ -407,15 +394,9 @@ class _FixedLengthRecordDataset(dataset_ops.DatasetSource):
compression_type,
argument_default="",
argument_dtype=dtypes.string)
if (self._compression_type is not None or
compat.forward_compatible(2018, 11, 30)):
variant_tensor = gen_dataset_ops.fixed_length_record_dataset_v2(
self._filenames, self._header_bytes, self._record_bytes,
self._footer_bytes, self._buffer_size, self._compression_type)
else:
variant_tensor = gen_dataset_ops.fixed_length_record_dataset(
self._filenames, self._header_bytes, self._record_bytes,
self._footer_bytes, self._buffer_size)
variant_tensor = gen_dataset_ops.fixed_length_record_dataset_v2(
self._filenames, self._header_bytes, self._record_bytes,
self._footer_bytes, self._buffer_size, self._compression_type)
super(_FixedLengthRecordDataset, self).__init__(variant_tensor)
@property