diff --git a/configure b/configure
index 372ec2cee87..a8e7bb77385 100755
--- a/configure
+++ b/configure
@@ -168,10 +168,10 @@ done
 
 if [ "$TF_ENABLE_XLA" == "1" ]; then
   # Update Bazel build configuration.
-  sed -i -e "s/WITH_XLA_SUPPORT = (False|True)/WITH_XLA_SUPPORT = True/" tensorflow/core/platform/default/build_config_root.bzl
+  perl -pi -e "s,WITH_XLA_SUPPORT = (False|True),WITH_XLA_SUPPORT = True,s" tensorflow/core/platform/default/build_config.bzl
 else
   # Update Bazel build configuration.
-  sed -i -e "s/WITH_XLA_SUPPORT = (False|True)/WITH_XLA_SUPPORT = False/" tensorflow/core/platform/default/build_config_root.bzl
+  perl -pi -e "s,WITH_XLA_SUPPORT = (False|True),WITH_XLA_SUPPORT = False,s" tensorflow/core/platform/default/build_config.bzl
 fi
 
 
diff --git a/tensorflow/contrib/rnn/BUILD b/tensorflow/contrib/rnn/BUILD
index c02423f7a39..bed23625d32 100644
--- a/tensorflow/contrib/rnn/BUILD
+++ b/tensorflow/contrib/rnn/BUILD
@@ -71,7 +71,6 @@ cuda_py_tests(
         "//tensorflow/python:variable_scope",
         "//tensorflow/python:variables",
     ],
-    xla_enabled = True,
 )
 
 cuda_py_tests(
@@ -92,7 +91,6 @@ cuda_py_tests(
         "//tensorflow/python:variable_scope",
         "//tensorflow/python:variables",
     ],
-    xla_enabled = True,
 )
 
 cuda_py_tests(
diff --git a/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_cell_test.py b/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_cell_test.py
index 8090743e6cf..0d9285ccb8f 100644
--- a/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_cell_test.py
+++ b/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_cell_test.py
@@ -19,7 +19,6 @@ from __future__ import division
 from __future__ import print_function
 
 import functools
-import itertools
 import sys
 
 # TODO: #6568 Remove this hack that makes dlopen() not crash.
@@ -34,14 +33,9 @@ import numpy as np
 
 from tensorflow.contrib.rnn.python.ops import core_rnn_cell_impl
 from tensorflow.contrib.rnn.python.ops.core_rnn_cell_impl import _linear as linear
-from tensorflow.core.protobuf import config_pb2
-from tensorflow.python.client import session
 from tensorflow.python.framework import dtypes
 from tensorflow.python.framework import ops
-from tensorflow.python.framework import random_seed
 from tensorflow.python.ops import array_ops
-from tensorflow.python.ops import control_flow_ops
-from tensorflow.python.ops import gradients_impl
 from tensorflow.python.ops import init_ops
 from tensorflow.python.ops import math_ops
 from tensorflow.python.ops import random_ops
@@ -49,41 +43,10 @@ from tensorflow.python.ops import rnn
 from tensorflow.python.ops import variable_scope
 from tensorflow.python.ops import variables as variables_lib
 from tensorflow.python.platform import test
-from tensorflow.python.util import nest
 
 # pylint: enable=protected-access
 
 
-def _CreateMultiLSTMCellOps(batch_size, num_units, input_depth,
-                            num_layers, max_time, compiled):
-  with variable_scope.variable_scope(
-      "root",
-      initializer=init_ops.random_uniform_initializer(-0.1, 0.1, seed=2)):
-    inputs = random_ops.random_uniform(
-        (max_time, batch_size, input_depth), seed=1)
-    rnn_cell = core_rnn_cell_impl.MultiRNNCell(
-        [core_rnn_cell_impl.LSTMCell(num_units, compiled=compiled)
-         for _ in range(num_layers)])
-    initial_state = rnn_cell.zero_state(
-        batch_size=batch_size, dtype=dtypes.float32)
-    outputs, final_state = rnn.dynamic_rnn(
-        cell=rnn_cell, inputs=inputs, initial_state=initial_state,
-        time_major=True)
-    flat_final_state = nest.flatten(final_state)
-    trainable_variables = variables_lib.trainable_variables()
-    outputs_grad = gradients_impl.gradients(
-        [outputs],
-        trainable_variables + [inputs] + nest.flatten(initial_state))
-    final_state_grad = gradients_impl.gradients(
-        flat_final_state,
-        trainable_variables + [inputs] + nest.flatten(initial_state))
-
-    return {"outputs": outputs,
-            "final_state": flat_final_state,
-            "outputs_grad": outputs_grad,
-            "final_state_grad": final_state_grad}
-
-
 class RNNCellTest(test.TestCase):
 
   def testLinear(self):
@@ -154,8 +117,8 @@ class RNNCellTest(test.TestCase):
         x = array_ops.zeros([1, 2])
         m = array_ops.zeros([1, 8])
         g, out_m = core_rnn_cell_impl.MultiRNNCell(
-            [core_rnn_cell_impl.BasicLSTMCell(2, state_is_tuple=False)
-             for _ in range(2)],
+            [core_rnn_cell_impl.BasicLSTMCell(
+                2, state_is_tuple=False)] * 2,
             state_is_tuple=False)(x, m)
         sess.run([variables_lib.global_variables_initializer()])
         res = sess.run(
@@ -202,8 +165,7 @@ class RNNCellTest(test.TestCase):
         m0 = (array_ops.zeros([1, 2]),) * 2
         m1 = (array_ops.zeros([1, 2]),) * 2
         cell = core_rnn_cell_impl.MultiRNNCell(
-            [core_rnn_cell_impl.BasicLSTMCell(2) for _ in range(2)],
-            state_is_tuple=True)
+            [core_rnn_cell_impl.BasicLSTMCell(2)] * 2, state_is_tuple=True)
         self.assertTrue(isinstance(cell.state_size, tuple))
         self.assertTrue(
             isinstance(cell.state_size[0], core_rnn_cell_impl.LSTMStateTuple))
@@ -235,8 +197,8 @@ class RNNCellTest(test.TestCase):
         m0 = array_ops.zeros([1, 4])
         m1 = array_ops.zeros([1, 4])
         cell = core_rnn_cell_impl.MultiRNNCell(
-            [core_rnn_cell_impl.BasicLSTMCell(2, state_is_tuple=False)
-             for _ in range(2)],
+            [core_rnn_cell_impl.BasicLSTMCell(
+                2, state_is_tuple=False)] * 2,
             state_is_tuple=True)
         g, (out_m0, out_m1) = cell(x, (m0, m1))
         sess.run([variables_lib.global_variables_initializer()])
@@ -445,8 +407,7 @@ class RNNCellTest(test.TestCase):
         x = array_ops.zeros([1, 2])
         m = array_ops.zeros([1, 4])
         _, ml = core_rnn_cell_impl.MultiRNNCell(
-            [core_rnn_cell_impl.GRUCell(2) for _ in range(2)],
-            state_is_tuple=False)(x, m)
+            [core_rnn_cell_impl.GRUCell(2)] * 2, state_is_tuple=False)(x, m)
         sess.run([variables_lib.global_variables_initializer()])
         res = sess.run(ml, {
             x.name: np.array([[1., 1.]]),
@@ -455,48 +416,6 @@ class RNNCellTest(test.TestCase):
         # The numbers in results were not calculated, this is just a smoke test.
         self.assertAllClose(res, [[0.175991, 0.175991, 0.13248, 0.13248]])
 
-  def testMultiRNNCellWithLSTMCellAndXLA(self):
-    # TODO(b/34735319): Don't run this test if XLA is not available.
-    batch_size = 16
-    num_units = 32
-    input_depth = 12
-    num_layers = 2
-    max_time = 20
-
-    random_seed.set_random_seed(1234)
-    with self.test_session(graph=ops.Graph()) as sess:
-      xla_ops = _CreateMultiLSTMCellOps(
-          batch_size=batch_size, num_units=num_units,
-          input_depth=input_depth, num_layers=num_layers,
-          max_time=max_time,
-          compiled=True)
-      sess.run([variables_lib.global_variables_initializer()])
-      xla_results = sess.run(xla_ops)
-
-    random_seed.set_random_seed(1234)
-    with self.test_session(graph=ops.Graph()) as sess:
-      non_xla_ops = _CreateMultiLSTMCellOps(
-          batch_size=batch_size, num_units=num_units,
-          input_depth=input_depth, num_layers=num_layers,
-          max_time=max_time,
-          compiled=False)
-      sess.run([variables_lib.global_variables_initializer()])
-      non_xla_results = sess.run(non_xla_ops)
-
-    self.assertAllClose(non_xla_results["outputs"], xla_results["outputs"])
-
-    for xla_value, non_xla_value in zip(
-        xla_results["final_state"], non_xla_results["final_state"]):
-      self.assertAllClose(xla_value, non_xla_value)
-
-    for xla_g, non_xla_g in zip(
-        xla_results["outputs_grad"], non_xla_results["outputs_grad"]):
-      self.assertAllClose(xla_g, non_xla_g)
-
-    for xla_g, non_xla_g in zip(
-        xla_results["final_state_grad"], non_xla_results["final_state_grad"]):
-      self.assertAllClose(xla_g, non_xla_g)
-
   def testMultiRNNCellWithStateTuple(self):
     with self.test_session() as sess:
       with variable_scope.variable_scope(
@@ -508,12 +427,11 @@ class RNNCellTest(test.TestCase):
         # Test incorrectness of state
         with self.assertRaisesRegexp(ValueError, "Expected state .* a tuple"):
           core_rnn_cell_impl.MultiRNNCell(
-              [core_rnn_cell_impl.GRUCell(2) for _ in range(2)],
+              [core_rnn_cell_impl.GRUCell(2)] * 2,
               state_is_tuple=True)(x, m_bad)
 
         _, ml = core_rnn_cell_impl.MultiRNNCell(
-            [core_rnn_cell_impl.GRUCell(2) for _ in range(2)],
-            state_is_tuple=True)(x, m_good)
+            [core_rnn_cell_impl.GRUCell(2)] * 2, state_is_tuple=True)(x, m_good)
 
         sess.run([variables_lib.global_variables_initializer()])
         res = sess.run(ml, {
@@ -572,7 +490,7 @@ class SlimRNNCellTest(test.TestCase):
         self.assertAllClose(res[1], res[3])
 
 
-def basic_rnn_cell(inputs, state, num_units, scope=None):  # pylint: disable=invalid-name
+def basic_rnn_cell(inputs, state, num_units, scope=None):
   if state is None:
     if inputs is not None:
       batch_size = inputs.get_shape()[0]
@@ -594,70 +512,5 @@ def basic_rnn_cell(inputs, state, num_units, scope=None):  # pylint: disable=inv
     return output, output
 
 
-class BenchmarkLSTMCellXLA(test.Benchmark):
-
-  def benchmarkDynamicRNNWithMultiLSTMCell(self):
-    num_layers = 3
-    max_time = 50
-    print("benchmarkDynamicRNNWithMultiLSTMCell")
-    print("\t" +
-          "\t".join(["inter_th", "intra_th",
-                     "batch_size", "num_units", "input_depth", "device",
-                     "compiled", "wall_time"]))
-
-    warmup_run = True
-    for (threads,
-         device,
-         num_units,
-         batch_size,
-         input_depth,
-         compiled) in itertools.product(
-             [{"inter": 0, "intra": 0}, {"inter": 1, "intra": 4}],
-             ["cpu", "gpu"],
-             [32, 512],
-             [1, 32, 256],
-             [32, 512],
-             [False, True]):
-      if threads["inter"] != 0:
-        # We only care about testing inter/intra op limitations on
-        # CPU with small batch size, to mimic embedded devices.
-        if device != "cpu" or batch_size != 1:
-          continue
-      if device == "cpu" and batch_size > 32:
-        continue
-      random_seed.set_random_seed(1234)
-      config = config_pb2.ConfigProto(
-          inter_op_parallelism_threads=threads["inter"],
-          intra_op_parallelism_threads=threads["intra"],
-          allow_soft_placement=False)
-      with session.Session(config=config, graph=ops.Graph()) as sess:
-        with ops.device("/%s:0" % device):
-          ops_dict = _CreateMultiLSTMCellOps(
-              batch_size=batch_size, num_units=num_units,
-              input_depth=input_depth, num_layers=num_layers,
-              max_time=max_time,
-              compiled=compiled)
-        sess.run([variables_lib.global_variables_initializer()])
-        all_ops = nest.flatten(ops_dict.values())
-        all_ops_group = control_flow_ops.group(*all_ops)
-        name_suffix = (
-            "inter_th_%d_intra_th_%d_bs_%d_units_%d_inputdepth_%d"
-            "_device_%s_xla_%s" % (
-                threads["inter"], threads["intra"],
-                batch_size, num_units, input_depth, device, compiled))
-        if warmup_run:
-          self.run_op_benchmark(
-              sess, all_ops_group, min_iters=30, name="ignore_warmup")
-          warmup_run = False
-        benchmark_results = self.run_op_benchmark(
-            sess, all_ops_group, min_iters=30,
-            name="benchmarkDynamicRNNWithMultiLSTMCell_%s" % name_suffix)
-        print("\t" +
-              "\t".join(["%s" % x for x in [
-                  threads["inter"], threads["intra"],
-                  batch_size, num_units, input_depth, device, compiled,
-                  benchmark_results["wall_time"]]]))
-
-
 if __name__ == "__main__":
   test.main()
diff --git a/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_test.py b/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_test.py
index 67e026dabf8..3c84c34726f 100644
--- a/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_test.py
+++ b/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_test.py
@@ -154,7 +154,6 @@ class RNNTest(test.TestCase):
   def setUp(self):
     self._seed = 23489
     np.random.seed(self._seed)
-    ops_lib.reset_default_graph()
 
   def testInvalidSequenceLengthShape(self):
     cell = Plus1RNNCell()
@@ -584,7 +583,7 @@ class LSTMTest(test.TestCase):
       (state_notuple_v,) = sess.run((state_notuple,),
                                     feed_dict={inputs[0]: input_value})
       state_tuple_v = sess.run(state_tuple, feed_dict={inputs[0]: input_value})
-      self.assertAllClose(state_notuple_v, np.hstack(state_tuple_v))
+      self.assertAllEqual(state_notuple_v, np.hstack(state_tuple_v))
 
   def _testProjSharding(self, use_gpu):
     num_units = 3
@@ -807,7 +806,7 @@ class LSTMTest(test.TestCase):
       self.assertEqual(len(outputs0_values), len(outputs2_values))
       for o1, o2, o3 in zip(outputs0_values, outputs1_values, outputs2_values):
         # Same weights used by both RNNs so outputs should be the same.
-        self.assertAllClose(o1, o2)
+        self.assertAllEqual(o1, o2)
         # Different weights used so outputs should be different.
         self.assertTrue(np.linalg.norm(o1 - o3) > 1e-6)
 
@@ -845,7 +844,7 @@ class LSTMTest(test.TestCase):
       outputs1_values = output_values[max_length:]
       self.assertEqual(len(outputs0_values), len(outputs1_values))
       for out0, out1 in zip(outputs0_values, outputs1_values):
-        self.assertAllClose(out0, out1)
+        self.assertAllEqual(out0, out1)
 
   def testNoProjNoShardingSimpleStateSaver(self):
     self._testNoProjNoShardingSimpleStateSaver(use_gpu=False)
@@ -935,13 +934,13 @@ class LSTMTest(test.TestCase):
                                   feed_dict={inputs[0]: input_value})
       outputs_dynamic_v = sess.run(outputs_dynamic,
                                    feed_dict={inputs[0]: input_value})
-      self.assertAllClose(outputs_static_v, outputs_dynamic_v)
+      self.assertAllEqual(outputs_static_v, outputs_dynamic_v)
 
       state_static_v = sess.run(state_static,
                                 feed_dict={inputs[0]: input_value})
       state_dynamic_v = sess.run(state_dynamic,
                                  feed_dict={inputs[0]: input_value})
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_dynamic_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_dynamic_v))
 
   def testDynamicRNNWithNestedTupleStates(self):
     num_units = 3
@@ -1004,13 +1003,13 @@ class LSTMTest(test.TestCase):
                                   feed_dict={inputs[0]: input_value})
       outputs_dynamic_v = sess.run(outputs_dynamic,
                                    feed_dict={inputs[0]: input_value})
-      self.assertAllClose(outputs_static_v, outputs_dynamic_v)
+      self.assertAllEqual(outputs_static_v, outputs_dynamic_v)
 
       state_static_v = sess.run(nest.flatten(state_static),
                                 feed_dict={inputs[0]: input_value})
       state_dynamic_v = sess.run(nest.flatten(state_dynamic),
                                  feed_dict={inputs[0]: input_value})
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_dynamic_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_dynamic_v))
 
   def _testDynamicEquivalentToStaticRNN(self, use_gpu, use_sequence_length):
     time_steps = 8
@@ -1039,9 +1038,7 @@ class LSTMTest(test.TestCase):
           use_peepholes=True,
           initializer=initializer,
           num_proj=num_proj,
-          state_is_tuple=False,
-          # TODO(b/XXX): Defun name aliasing causes errors
-          compiled=False)
+          state_is_tuple=False)
 
       with variable_scope.variable_scope("dynamic_scope"):
         outputs_static, state_static = core_rnn.static_rnn(
@@ -1099,9 +1096,7 @@ class LSTMTest(test.TestCase):
           use_peepholes=True,
           initializer=initializer,
           num_proj=num_proj,
-          state_is_tuple=False,
-          # TODO(b/XXX): Defun name aliasing causes errors
-          compiled=False)
+          state_is_tuple=False)
 
       with variable_scope.variable_scope("dynamic_scope"):
         outputs_dynamic, state_dynamic = rnn.dynamic_rnn(
@@ -1155,10 +1150,10 @@ class LSTMTest(test.TestCase):
     ######### Step 3: Comparisons
     self.assertEqual(len(values_static), len(values_dynamic))
     for (value_static, value_dynamic) in zip(values_static, values_dynamic):
-      self.assertAllClose(value_static, value_dynamic)
-    self.assertAllClose(state_value_static, state_value_dynamic)
+      self.assertAllEqual(value_static, value_dynamic)
+    self.assertAllEqual(state_value_static, state_value_dynamic)
 
-    self.assertAllClose(static_grad_values, dynamic_grad_values)
+    self.assertAllEqual(static_grad_values, dynamic_grad_values)
 
     self.assertEqual(
         len(static_individual_grad_values), len(dynamic_individual_grad_values))
@@ -1169,14 +1164,14 @@ class LSTMTest(test.TestCase):
     for i, (a, b) in enumerate(
         zip(static_individual_grad_values, dynamic_individual_grad_values)):
       tf_logging.info("Comparing individual gradients iteration %d" % i)
-      self.assertAllClose(a, b)
+      self.assertAllEqual(a, b)
 
     for i, (a, b) in enumerate(
         zip(static_individual_var_grad_values,
             dynamic_individual_var_grad_values)):
       tf_logging.info("Comparing individual variable gradients iteration %d" %
                       i)
-      self.assertAllClose(a, b)
+      self.assertAllEqual(a, b)
 
   def testDynamicEquivalentToStaticRNN(self):
     self._testDynamicEquivalentToStaticRNN(
@@ -1298,13 +1293,13 @@ class BidirectionalRNNTest(test.TestCase):
       # Both sequences in batch are length=8.  Check that the time=i
       # forward output is equal to time=8-1-i backward output
       for i in xrange(8):
-        self.assertAllClose(out[i][0][0], out[8 - 1 - i][0][3])
-        self.assertAllClose(out[i][0][1], out[8 - 1 - i][0][4])
-        self.assertAllClose(out[i][0][2], out[8 - 1 - i][0][5])
+        self.assertEqual(out[i][0][0], out[8 - 1 - i][0][3])
+        self.assertEqual(out[i][0][1], out[8 - 1 - i][0][4])
+        self.assertEqual(out[i][0][2], out[8 - 1 - i][0][5])
       for i in xrange(8):
-        self.assertAllClose(out[i][1][0], out[8 - 1 - i][1][3])
-        self.assertAllClose(out[i][1][1], out[8 - 1 - i][1][4])
-        self.assertAllClose(out[i][1][2], out[8 - 1 - i][1][5])
+        self.assertEqual(out[i][1][0], out[8 - 1 - i][1][3])
+        self.assertEqual(out[i][1][1], out[8 - 1 - i][1][4])
+        self.assertEqual(out[i][1][2], out[8 - 1 - i][1][5])
       # Via the reasoning above, the forward and backward final state should be
       # exactly the same
       self.assertAllClose(s_fw, s_bw)
@@ -1404,27 +1399,27 @@ class BidirectionalRNNTest(test.TestCase):
       # Check that the time=0 forward output is equal to time=1 backward output
       if not use_time_major:
         out = np.swapaxes(out, 0, 1)
-      self.assertAllClose(out[0][0][0], out[1][0][3])
-      self.assertAllClose(out[0][0][1], out[1][0][4])
-      self.assertAllClose(out[0][0][2], out[1][0][5])
+      self.assertEqual(out[0][0][0], out[1][0][3])
+      self.assertEqual(out[0][0][1], out[1][0][4])
+      self.assertEqual(out[0][0][2], out[1][0][5])
       # Check that the time=1 forward output is equal to time=0 backward output
-      self.assertAllClose(out[1][0][0], out[0][0][3])
-      self.assertAllClose(out[1][0][1], out[0][0][4])
-      self.assertAllClose(out[1][0][2], out[0][0][5])
+      self.assertEqual(out[1][0][0], out[0][0][3])
+      self.assertEqual(out[1][0][1], out[0][0][4])
+      self.assertEqual(out[1][0][2], out[0][0][5])
 
       # Second sequence in batch is length=3
       # Check that the time=0 forward output is equal to time=2 backward output
-      self.assertAllClose(out[0][1][0], out[2][1][3])
-      self.assertAllClose(out[0][1][1], out[2][1][4])
-      self.assertAllClose(out[0][1][2], out[2][1][5])
+      self.assertEqual(out[0][1][0], out[2][1][3])
+      self.assertEqual(out[0][1][1], out[2][1][4])
+      self.assertEqual(out[0][1][2], out[2][1][5])
       # Check that the time=1 forward output is equal to time=1 backward output
-      self.assertAllClose(out[1][1][0], out[1][1][3])
-      self.assertAllClose(out[1][1][1], out[1][1][4])
-      self.assertAllClose(out[1][1][2], out[1][1][5])
+      self.assertEqual(out[1][1][0], out[1][1][3])
+      self.assertEqual(out[1][1][1], out[1][1][4])
+      self.assertEqual(out[1][1][2], out[1][1][5])
       # Check that the time=2 forward output is equal to time=0 backward output
-      self.assertAllClose(out[2][1][0], out[0][1][3])
-      self.assertAllClose(out[2][1][1], out[0][1][4])
-      self.assertAllClose(out[2][1][2], out[0][1][5])
+      self.assertEqual(out[2][1][0], out[0][1][3])
+      self.assertEqual(out[2][1][1], out[0][1][4])
+      self.assertEqual(out[2][1][2], out[0][1][5])
       # Via the reasoning above, the forward and backward final state should be
       # exactly the same
       self.assertAllClose(s_fw, s_bw)
@@ -1565,13 +1560,13 @@ class MultiDimensionalLSTMTest(test.TestCase):
       outputs_sav_v = sess.run(outputs_sav,
                                feed_dict={inputs_using_dim[0]: input_value})
 
-      self.assertAllClose(outputs_static_v, outputs_dynamic_v)
-      self.assertAllClose(outputs_static_v, outputs_sav_v)
+      self.assertAllEqual(outputs_static_v, outputs_dynamic_v)
+      self.assertAllEqual(outputs_static_v, outputs_sav_v)
       outputs_static_array = np.array(outputs_static_v)
       outputs_static_array_double = np.concatenate(
           (outputs_static_array, outputs_static_array), axis=2)
       outputs_bid_array = np.array(outputs_bid_v)
-      self.assertAllClose(outputs_static_array_double, outputs_bid_array)
+      self.assertAllEqual(outputs_static_array_double, outputs_bid_array)
 
       state_static_v = sess.run(state_static,
                                 feed_dict={inputs[0]: input_value})
@@ -1583,10 +1578,10 @@ class MultiDimensionalLSTMTest(test.TestCase):
                                 feed_dict={inputs_using_dim[0]: input_value})
       state_sav_v = sess.run(state_sav,
                              feed_dict={inputs_using_dim[0]: input_value})
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_dynamic_v))
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_sav_v))
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_bid_fw_v))
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_bid_bw_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_dynamic_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_sav_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_bid_fw_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_bid_bw_v))
 
 
 class NestedLSTMTest(test.TestCase):
@@ -1668,14 +1663,14 @@ class NestedLSTMTest(test.TestCase):
       outputs_bid_v = sess.run(outputs_bid,
                                feed_dict={single_input_using_dim: input_value})
 
-      self.assertAllClose(outputs_static_v,
+      self.assertAllEqual(outputs_static_v,
                           np.transpose(outputs_dynamic_v, (1, 0, 2, 3)))
-      self.assertAllClose(outputs_static_v, outputs_sav_v)
+      self.assertAllEqual(outputs_static_v, outputs_sav_v)
       outputs_static_array = np.array(outputs_static_v)
       outputs_static_array_double = np.concatenate(
           (outputs_static_array, outputs_static_array), axis=3)
       outputs_bid_array = np.array(outputs_bid_v)
-      self.assertAllClose(outputs_static_array_double, outputs_bid_array)
+      self.assertAllEqual(outputs_static_array_double, outputs_bid_array)
 
       state_dynamic_v = sess.run(state_dynamic,
                                  feed_dict={single_input: input_value})
@@ -1687,10 +1682,10 @@ class NestedLSTMTest(test.TestCase):
                                 feed_dict={single_input_using_dim: input_value})
       state_sav_v = sess.run(state_sav,
                              feed_dict={single_input_using_dim: input_value})
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_dynamic_v))
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_sav_v))
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_bid_fw_v))
-      self.assertAllClose(np.hstack(state_static_v), np.hstack(state_bid_bw_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_dynamic_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_sav_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_bid_fw_v))
+      self.assertAllEqual(np.hstack(state_static_v), np.hstack(state_bid_bw_v))
 
 
 class StateSaverRNNTest(test.TestCase):
diff --git a/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py b/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py
index c2843edaf2e..2d65d956a8b 100644
--- a/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py
+++ b/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py
@@ -22,7 +22,6 @@ from __future__ import print_function
 import collections
 import math
 
-from tensorflow.python.framework import function
 from tensorflow.python.framework import ops
 from tensorflow.python.ops import array_ops
 from tensorflow.python.ops import clip_ops
@@ -62,7 +61,7 @@ class BasicRNNCell(RNNCell):
     """Most basic RNN: output = new_state = act(W * input + U * state + B)."""
     with vs.variable_scope(scope or "basic_rnn_cell"):
       output = self._activation(
-          _linear([inputs, state], self._num_units, True))
+          _linear([inputs, state], self._num_units, True, scope=scope))
     return output, output
 
 
@@ -90,13 +89,14 @@ class GRUCell(RNNCell):
         # We start with bias of 1.0 to not reset and not update.
         r, u = array_ops.split(
             value=_linear(
-                [inputs, state], 2 * self._num_units, True, 1.0),
+                [inputs, state], 2 * self._num_units, True, 1.0, scope=scope),
             num_or_size_splits=2,
             axis=1)
         r, u = sigmoid(r), sigmoid(u)
       with vs.variable_scope("candidate"):
         c = self._activation(_linear([inputs, r * state],
-                                     self._num_units, True))
+                                     self._num_units, True,
+                                     scope=scope))
       new_h = u * state + (1 - u) * c
     return new_h, new_h
 
@@ -176,7 +176,7 @@ class BasicLSTMCell(RNNCell):
         c, h = state
       else:
         c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
-      concat = _linear([inputs, h], 4 * self._num_units, True)
+      concat = _linear([inputs, h], 4 * self._num_units, True, scope=scope)
 
       # i = input_gate, j = new_input, f = forget_gate, o = output_gate
       i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
@@ -192,13 +192,6 @@ class BasicLSTMCell(RNNCell):
       return new_h, new_state
 
 
-def _maybe_compile(fun, compiled):
-  if not compiled:
-    return fun
-  else:
-    return function.Defun(noinline=True, compiled=True)(fun)
-
-
 class LSTMCell(RNNCell):
   """Long short-term memory unit (LSTM) recurrent network cell.
 
@@ -226,7 +219,7 @@ class LSTMCell(RNNCell):
                initializer=None, num_proj=None, proj_clip=None,
                num_unit_shards=None, num_proj_shards=None,
                forget_bias=1.0, state_is_tuple=True,
-               activation=tanh, compiled=False):
+               activation=tanh):
     """Initialize the parameters for an LSTM cell.
 
     Args:
@@ -253,12 +246,6 @@ class LSTMCell(RNNCell):
         the `c_state` and `m_state`.  If False, they are concatenated
         along the column axis.  This latter behavior will soon be deprecated.
       activation: Activation function of the inner states.
-      compiled: Python boolean.  If `True`, the core computation of the LSTM
-        cell is compiled via XLA.  As of now, this provides speedups for
-        most GPU calculations, and on small batch CPU and embedded calculations.
-
-    Raises:
-      ValueError: if compiled=True and state_is_tuple=False (not supported).
     """
     if not state_is_tuple:
       logging.warn("%s: Using a concatenated state is slower and will soon be "
@@ -270,9 +257,6 @@ class LSTMCell(RNNCell):
           "%s: The num_unit_shards and proj_unit_shards parameters are "
           "deprecated and will be removed in Jan 2017.  "
           "Use a variable scope with a partitioner instead.", self)
-    if not state_is_tuple and compiled:
-      raise ValueError(
-          "Combining state_is_tuple=False and compiled=True is not supported.")
 
     self._num_units = num_units
     self._use_peepholes = use_peepholes
@@ -285,7 +269,6 @@ class LSTMCell(RNNCell):
     self._forget_bias = forget_bias
     self._state_is_tuple = state_is_tuple
     self._activation = activation
-    self._compiled = compiled
 
     if num_proj:
       self._state_size = (
@@ -334,111 +317,73 @@ class LSTMCell(RNNCell):
     """
     num_proj = self._num_units if self._num_proj is None else self._num_proj
 
-    def _kernel(k_inputs, state_p0, state_p1):
-      """Internal kernel for the single step of LSTM.
+    if self._state_is_tuple:
+      (c_prev, m_prev) = state
+    else:
+      c_prev = array_ops.slice(state, [0, 0], [-1, self._num_units])
+      m_prev = array_ops.slice(state, [0, self._num_units], [-1, num_proj])
 
-      Args:
-        k_inputs: Input Tensor.
-        state_p0: Either the state or the c component of the state.
-        state_p1: Either the state or the m component of the state.
+    dtype = inputs.dtype
+    input_size = inputs.get_shape().with_rank(2)[1]
+    if input_size.value is None:
+      raise ValueError("Could not infer input size from inputs.get_shape()[-1]")
+    with vs.variable_scope(scope or "lstm_cell",
+                           initializer=self._initializer) as unit_scope:
+      if self._num_unit_shards is not None:
+        unit_scope.set_partitioner(
+            partitioned_variables.fixed_size_partitioner(
+                self._num_unit_shards))
+      # i = input_gate, j = new_input, f = forget_gate, o = output_gate
+      lstm_matrix = _linear([inputs, m_prev], 4 * self._num_units, bias=True,
+                            scope=scope)
+      i, j, f, o = array_ops.split(
+          value=lstm_matrix, num_or_size_splits=4, axis=1)
 
-      Returns:
-        (m, c) or (m, concat([c, m])) depending on state_is_tuple.
+      # Diagonal connections
+      if self._use_peepholes:
+        with vs.variable_scope(unit_scope) as projection_scope:
+          if self._num_unit_shards is not None:
+            projection_scope.set_partitioner(None)
+          w_f_diag = vs.get_variable(
+              "w_f_diag", shape=[self._num_units], dtype=dtype)
+          w_i_diag = vs.get_variable(
+              "w_i_diag", shape=[self._num_units], dtype=dtype)
+          w_o_diag = vs.get_variable(
+              "w_o_diag", shape=[self._num_units], dtype=dtype)
 
-      Raises:
-        ValueError: see above docstring.
-      """
-      k_inputs.set_shape(inputs.get_shape())
-      if self._state_is_tuple:
-        (c_prev, m_prev) = state_p0, state_p1
-        c_prev.set_shape(state[0].get_shape())
-        m_prev.set_shape(state[1].get_shape())
+      if self._use_peepholes:
+        c = (sigmoid(f + self._forget_bias + w_f_diag * c_prev) * c_prev +
+             sigmoid(i + w_i_diag * c_prev) * self._activation(j))
       else:
-        k_state = state_p0
-        c_prev = array_ops.slice(k_state, [0, 0], [-1, self._num_units])
-        m_prev = array_ops.slice(k_state, [0, self._num_units], [-1, num_proj])
+        c = (sigmoid(f + self._forget_bias) * c_prev + sigmoid(i) *
+             self._activation(j))
 
-      dtype = k_inputs.dtype
-      input_size = k_inputs.get_shape().with_rank(2)[1]
-      if input_size.value is None:
-        raise ValueError(
-            "Could not infer input size from inputs.get_shape()[-1]")
-      with vs.variable_scope(scope or "lstm_cell",
-                             initializer=self._initializer) as unit_scope:
-        if self._num_unit_shards is not None:
-          unit_scope.set_partitioner(
-              partitioned_variables.fixed_size_partitioner(
-                  self._num_unit_shards))
-          # i = input_gate, j = new_input, f = forget_gate, o = output_gate
-        lstm_matrix = _linear(
-            [k_inputs, m_prev], 4 * self._num_units, bias=True,
-            compiled=self._compiled)
-        i, j, f, o = array_ops.split(
-            value=lstm_matrix, num_or_size_splits=4, axis=1)
+      if self._cell_clip is not None:
+        # pylint: disable=invalid-unary-operand-type
+        c = clip_ops.clip_by_value(c, -self._cell_clip, self._cell_clip)
+        # pylint: enable=invalid-unary-operand-type
 
-        # Diagonal connections
-        if self._use_peepholes:
-          with vs.variable_scope(unit_scope) as projection_scope:
-            if self._num_unit_shards is not None:
-              projection_scope.set_partitioner(None)
-            w_f_diag = vs.get_variable(
-                "w_f_diag", shape=[self._num_units], dtype=dtype)
-            w_i_diag = vs.get_variable(
-                "w_i_diag", shape=[self._num_units], dtype=dtype)
-            w_o_diag = vs.get_variable(
-                "w_o_diag", shape=[self._num_units], dtype=dtype)
-          c = (sigmoid(f + self._forget_bias + w_f_diag * c_prev) * c_prev +
-               sigmoid(i + w_i_diag * c_prev) * self._activation(j))
-        else:
-          c = (sigmoid(f + self._forget_bias) * c_prev + sigmoid(i) *
-               self._activation(j))
+      if self._use_peepholes:
+        m = sigmoid(o + w_o_diag * c) * self._activation(c)
+      else:
+        m = sigmoid(o) * self._activation(c)
 
-        if self._cell_clip is not None:
+      if self._num_proj is not None:
+        with vs.variable_scope("projection") as proj_scope:
+          if self._num_proj_shards is not None:
+            proj_scope.set_partitioner(
+                partitioned_variables.fixed_size_partitioner(
+                    self._num_proj_shards))
+          m = _linear(m, self._num_proj, bias=False, scope=scope)
+
+        if self._proj_clip is not None:
           # pylint: disable=invalid-unary-operand-type
-          c = clip_ops.clip_by_value(c, -self._cell_clip, self._cell_clip)
+          m = clip_ops.clip_by_value(m, -self._proj_clip, self._proj_clip)
           # pylint: enable=invalid-unary-operand-type
 
-        if self._use_peepholes:
-          m = sigmoid(o + w_o_diag * c) * self._activation(c)
-        else:
-          m = sigmoid(o) * self._activation(c)
-
-        if self._num_proj is not None:
-          with vs.variable_scope("projection") as proj_scope:
-            if self._num_proj_shards is not None:
-              proj_scope.set_partitioner(
-                  partitioned_variables.fixed_size_partitioner(
-                      self._num_proj_shards))
-            m = _linear(m, self._num_proj, bias=False, compiled=self._compiled)
-
-          if self._proj_clip is not None:
-            # pylint: disable=invalid-unary-operand-type
-            m = clip_ops.clip_by_value(m, -self._proj_clip, self._proj_clip)
-            # pylint: enable=invalid-unary-operand-type
-
-      if self._state_is_tuple:
-        return m, c
-      else:
-        return m, array_ops.concat([c, m], 1)
-
-    compiled_kernel = _maybe_compile(_kernel, self._compiled)
-
-    if self._state_is_tuple:
-      batch_shape = (
-          inputs.get_shape()[:1].merge_with(
-              state[0].get_shape()[:1]).merge_with(
-                  state[1].get_shape()[:1]))
-      emit_m, emit_c = compiled_kernel(inputs, state[0], state[1])
-      emit_c.set_shape(batch_shape.concatenate([state[0].get_shape()[1]]))
-      emit_m.set_shape(batch_shape.concatenate([state[1].get_shape()[1]]))
-      emit_state = LSTMStateTuple(emit_c, emit_m)
-    else:
-      batch_shape = inputs.get_shape()[:1].merge_with(state.get_shape()[:1])
-      emit_m, emit_state = compiled_kernel(inputs, state, state)
-      emit_m.set_shape(batch_shape.concatenate([num_proj]))
-      emit_state.set_shape(batch_shape.concatenate([state.get_shape()[1]]))
-
-    return emit_m, emit_state
+    new_state = (LSTMStateTuple(c, m) if self._state_is_tuple else
+                 array_ops.concat([c, m], 1))
+    return m, new_state
 
 
 class OutputProjectionWrapper(RNNCell):
@@ -481,7 +426,7 @@ class OutputProjectionWrapper(RNNCell):
     output, res_state = self._cell(inputs, state)
     # Default scope: "OutputProjectionWrapper"
     with vs.variable_scope(scope or "output_projection_wrapper"):
-      projected = _linear(output, self._output_size, True)
+      projected = _linear(output, self._output_size, True, scope=scope)
     return projected, res_state
 
 
@@ -523,7 +468,7 @@ class InputProjectionWrapper(RNNCell):
     """Run the input projection and then the cell."""
     # Default scope: "InputProjectionWrapper"
     with vs.variable_scope(scope or "input_projection_wrapper"):
-      projected = _linear(inputs, self._num_proj, True)
+      projected = _linear(inputs, self._num_proj, True, scope=scope)
     return self._cell(projected, state)
 
 
@@ -817,7 +762,7 @@ class _SlimRNNCell(RNNCell):
     return output, state
 
 
-def _linear(args, output_size, bias, bias_start=0.0, compiled=False):
+def _linear(args, output_size, bias, bias_start=0.0, scope=None):
   """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
 
   Args:
@@ -825,7 +770,7 @@ def _linear(args, output_size, bias, bias_start=0.0, compiled=False):
     output_size: int, second dimension of W[i].
     bias: boolean, whether to add a bias term or not.
     bias_start: starting value to initialize the bias; 0 by default.
-    compiled: boolean, _linear plays nicely with XLA if it is enabled.
+    scope: (optional) Variable scope to create parameters in.
 
   Returns:
     A 2D Tensor with shape [batch x output_size] equal to
@@ -870,8 +815,4 @@ def _linear(args, output_size, bias, bias_start=0.0, compiled=False):
           "biases", [output_size],
           dtype=dtype,
           initializer=init_ops.constant_initializer(bias_start, dtype=dtype))
-  if compiled:
-    # TODO(b/34505635): Defuns don't play well with bias_add
-    return res + biases
-  else:
-    return nn_ops.bias_add(res, biases)
+  return nn_ops.bias_add(res, biases)
diff --git a/tensorflow/contrib/seq2seq/python/ops/sampling_decoder.py b/tensorflow/contrib/seq2seq/python/ops/sampling_decoder.py
index 2e754b7f223..cfb964d8858 100644
--- a/tensorflow/contrib/seq2seq/python/ops/sampling_decoder.py
+++ b/tensorflow/contrib/seq2seq/python/ops/sampling_decoder.py
@@ -113,8 +113,7 @@ class BasicSamplingDecoder(decoder.Decoder):
         dtypes.int32)
 
   def initialize(self, name=None):
-    with ops.name_scope("basic_sampling_decoder_initialize"):
-      return self._sampler.initialize() + (self._initial_state,)
+    return self._sampler.initialize() + (self._initial_state,)
 
   def step(self, time, inputs, state):
     """Perform a decoding step.
@@ -127,12 +126,11 @@ class BasicSamplingDecoder(decoder.Decoder):
     Returns:
       `(outputs, next_state, next_inputs, finished)`.
     """
-    with ops.name_scope("basic_sampling_decoder_step"):
-      cell_outputs, next_state = self._cell(inputs, state)
-      (sample_id, finished, next_inputs) = self._sampler.sample(
-          time=time, outputs=cell_outputs, state=next_state)
-      outputs = SamplingDecoderOutput(cell_outputs, sample_id)
-      return (outputs, next_state, next_inputs, finished)
+    cell_outputs, next_state = self._cell(inputs, state)
+    (sample_id, finished, next_inputs) = self._sampler.sample(
+        time=time, outputs=cell_outputs, state=next_state)
+    outputs = SamplingDecoderOutput(cell_outputs, sample_id)
+    return (outputs, next_state, next_inputs, finished)
 
 
 class BasicTrainingSampler(Sampler):
diff --git a/tensorflow/core/platform/default/build_config.bzl b/tensorflow/core/platform/default/build_config.bzl
index 56d4f6ff58d..ebf835d1102 100644
--- a/tensorflow/core/platform/default/build_config.bzl
+++ b/tensorflow/core/platform/default/build_config.bzl
@@ -7,6 +7,7 @@ load("//tensorflow:tensorflow.bzl", "if_not_mobile")
 # configure may change the following lines
 WITH_GCP_SUPPORT = False
 WITH_HDFS_SUPPORT = False
+WITH_XLA_SUPPORT = False
 WITH_JEMALLOC = True
 
 # Appends a suffix to a list of deps.
@@ -241,3 +242,15 @@ def tf_additional_cloud_kernel_deps():
   #if WITH_GCP_SUPPORT:
   #  deps = if_not_mobile(["//tensorflow/core:cloud_ops_op_lib"])
   return deps
+
+def tf_additional_plugin_deps():
+  deps = []
+  if WITH_XLA_SUPPORT:
+    deps.append("//tensorflow/compiler/jit")
+  return deps
+
+def tf_additional_license_deps():
+  licenses = []
+  if WITH_XLA_SUPPORT:
+    licenses.append("@llvm//:LICENSE.TXT")
+  return licenses
diff --git a/tensorflow/core/platform/default/build_config_root.bzl b/tensorflow/core/platform/default/build_config_root.bzl
index 23a7b9065a6..2fa2726bde7 100644
--- a/tensorflow/core/platform/default/build_config_root.bzl
+++ b/tensorflow/core/platform/default/build_config_root.bzl
@@ -2,25 +2,8 @@
 # The functions in this file might be referred by tensorflow.bzl. They have to
 # be separate to avoid cyclic references.
 
-WITH_XLA_SUPPORT = False
-
 def tf_cuda_tests_tags():
   return ["local"]
 
 def tf_sycl_tests_tags():
   return ["local"]
-
-def tf_additional_plugin_deps():
-  deps = []
-  if WITH_XLA_SUPPORT:
-    deps.append("//tensorflow/compiler/jit")
-  return deps
-
-def tf_additional_xla_deps_py():
-  return []
-
-def tf_additional_license_deps():
-  licenses = []
-  if WITH_XLA_SUPPORT:
-    licenses.append("@llvm//:LICENSE.TXT")
-  return licenses
diff --git a/tensorflow/python/BUILD b/tensorflow/python/BUILD
index 2befe43be6a..1834ce570ef 100644
--- a/tensorflow/python/BUILD
+++ b/tensorflow/python/BUILD
@@ -23,7 +23,7 @@ load("//tensorflow:tensorflow.bzl", "cuda_py_tests")
 load("//tensorflow/core:platform/default/build_config.bzl", "tf_proto_library")
 load("//tensorflow/core:platform/default/build_config.bzl", "tf_proto_library_py")
 load("//tensorflow/core:platform/default/build_config.bzl", "tf_additional_lib_deps")
-load("//tensorflow/core:platform/default/build_config_root.bzl", "tf_additional_plugin_deps")
+load("//tensorflow/core:platform/default/build_config.bzl", "tf_additional_plugin_deps")
 load("//tensorflow/python:build_defs.bzl", "tf_gen_op_wrapper_private_py")
 
 py_library(
diff --git a/tensorflow/tensorflow.bzl b/tensorflow/tensorflow.bzl
index 0e5b39af10d..7fa7e4a91db 100644
--- a/tensorflow/tensorflow.bzl
+++ b/tensorflow/tensorflow.bzl
@@ -12,7 +12,6 @@ load(
     "//tensorflow/core:platform/default/build_config_root.bzl",
     "tf_cuda_tests_tags",
     "tf_sycl_tests_tags",
-    "tf_additional_xla_deps_py",
 )
 load(
     "@local_config_cuda//cuda:build_defs.bzl",
@@ -790,10 +789,7 @@ def py_test(deps=[], **kwargs):
       **kwargs)
 
 def tf_py_test(name, srcs, size="medium", data=[], main=None, args=[],
-               tags=[], shard_count=1, additional_deps=[], flaky=0,
-               xla_enabled=False):
-  if xla_enabled:
-    additional_deps += tf_additional_xla_deps_py()
+               tags=[], shard_count=1, additional_deps=[], flaky=0):
   native.py_test(
       name=name,
       size=size,
@@ -815,8 +811,7 @@ def tf_py_test(name, srcs, size="medium", data=[], main=None, args=[],
       srcs_version="PY2AND3")
 
 def cuda_py_test(name, srcs, size="medium", data=[], main=None, args=[],
-                 shard_count=1, additional_deps=[], tags=[], flaky=0,
-                 xla_enabled=False):
+                 shard_count=1, additional_deps=[], tags=[], flaky=0):
   test_tags = tags + tf_cuda_tests_tags()
   tf_py_test(name=name,
              size=size,
@@ -827,12 +822,10 @@ def cuda_py_test(name, srcs, size="medium", data=[], main=None, args=[],
              tags=test_tags,
              shard_count=shard_count,
              additional_deps=additional_deps,
-             flaky=flaky,
-             xla_enabled=xla_enabled)
+             flaky=flaky)
 
 def sycl_py_test(name, srcs, size="medium", data=[], main=None, args=[],
-                 shard_count=1, additional_deps=[], tags=[], flaky=0,
-                 xla_enabled=False):
+                shard_count=1, additional_deps=[], tags=[], flaky=0):
  test_tags = tags + tf_sycl_tests_tags()
  tf_py_test(name=name,
             size=size,
@@ -843,8 +836,7 @@ def sycl_py_test(name, srcs, size="medium", data=[], main=None, args=[],
             tags=test_tags,
             shard_count=shard_count,
             additional_deps=additional_deps,
-            flaky=flaky,
-            xla_enabled=xla_enabled)
+            flaky=flaky)
 
 def py_tests(name,
              srcs,
@@ -853,8 +845,7 @@ def py_tests(name,
              data=[],
              tags=[],
              shard_count=1,
-             prefix="",
-             xla_enabled=False):
+             prefix=""):
   for src in srcs:
     test_name = src.split("/")[-1].split(".")[0]
     if prefix:
@@ -866,15 +857,13 @@ def py_tests(name,
                tags=tags,
                shard_count=shard_count,
                data=data,
-               additional_deps=additional_deps,
-               xla_enabled=xla_enabled)
+               additional_deps=additional_deps)
 
 def cuda_py_tests(name, srcs, size="medium", additional_deps=[], data=[],
-                  shard_count=1, tags=[], prefix="", xla_enabled=False):
+                  shard_count=1, tags=[], prefix=""):
   test_tags = tags + tf_cuda_tests_tags()
   py_tests(name=name, size=size, srcs=srcs, additional_deps=additional_deps,
-           data=data, tags=test_tags, shard_count=shard_count,prefix=prefix,
-           xla_enabled=xla_enabled)
+           data=data, tags=test_tags, shard_count=shard_count,prefix=prefix)
 
 # Creates a genrule named <name> for running tools/proto_text's generator to
 # make the proto_text functions, for the protos passed in <srcs>.
diff --git a/tensorflow/tools/pip_package/BUILD b/tensorflow/tools/pip_package/BUILD
index 85a8b79f859..0ffbec8b3cb 100644
--- a/tensorflow/tools/pip_package/BUILD
+++ b/tensorflow/tools/pip_package/BUILD
@@ -4,7 +4,7 @@
 package(default_visibility = ["//visibility:private"])
 
 load("//tensorflow:tensorflow.bzl", "transitive_hdrs")
-load("//tensorflow/core:platform/default/build_config_root.bzl", "tf_additional_license_deps")
+load("//tensorflow/core:platform/default/build_config.bzl", "tf_additional_license_deps")
 
 # This returns a list of headers of all public header libraries (e.g.,
 # framework, lib), and all of the transitive dependencies of those