micro: copy operator DIV kernel from lite
This is a copy without modification of the kernel and test for operator DIV from tensorflow/lite/kernels. Adaptations to micro and addition to the micro build to follow. This represents PR step 3 of the work to port operator DIV as tracked in Issue #45431
This commit is contained in:
parent
635e8a0749
commit
8d8343910c
266
tensorflow/lite/micro/kernels/div.cc
Normal file
266
tensorflow/lite/micro/kernels/div.cc
Normal file
@ -0,0 +1,266 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/kernels/internal/optimized/cpu_check.h"
|
||||
#include "tensorflow/lite/kernels/internal/optimized/neon_check.h"
|
||||
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace builtin {
|
||||
namespace div {
|
||||
|
||||
// This file has three implementation of Div.
|
||||
enum KernelType {
|
||||
kReference,
|
||||
kGenericOptimized, // Neon-free
|
||||
kNeonOptimized,
|
||||
};
|
||||
|
||||
constexpr int kInputTensor1 = 0;
|
||||
constexpr int kInputTensor2 = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
bool requires_broadcast;
|
||||
|
||||
// Parameters used in the quantized paths where the output is 8bit
|
||||
int32 output_activation_min;
|
||||
int32 output_activation_max;
|
||||
|
||||
// Parameters used in all quantized paths
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
};
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
auto* data = new OpData;
|
||||
data->requires_broadcast = false;
|
||||
return data;
|
||||
}
|
||||
|
||||
void Free(TfLiteContext* context, void* buffer) {
|
||||
delete reinterpret_cast<OpData*>(buffer);
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data);
|
||||
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input1;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetInputSafe(context, node, kInputTensor1, &input1));
|
||||
const TfLiteTensor* input2;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetInputSafe(context, node, kInputTensor2, &input2));
|
||||
TfLiteTensor* output;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetOutputSafe(context, node, kOutputTensor, &output));
|
||||
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
||||
output->type = input2->type;
|
||||
|
||||
data->requires_broadcast = !HaveSameShapes(input1, input2);
|
||||
|
||||
TfLiteIntArray* output_size = nullptr;
|
||||
if (data->requires_broadcast) {
|
||||
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
|
||||
context, input1, input2, &output_size));
|
||||
} else {
|
||||
output_size = TfLiteIntArrayCopy(input1->dims);
|
||||
}
|
||||
|
||||
if (output->type == kTfLiteUInt8) {
|
||||
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
||||
context, params->activation, output, &data->output_activation_min,
|
||||
&data->output_activation_max));
|
||||
const double real_multiplier =
|
||||
input1->params.scale / (input2->params.scale * output->params.scale);
|
||||
QuantizeMultiplier(real_multiplier, &data->output_multiplier,
|
||||
&data->output_shift);
|
||||
}
|
||||
|
||||
return context->ResizeTensor(context, output, output_size);
|
||||
}
|
||||
|
||||
template <KernelType kernel_type>
|
||||
void EvalDiv(TfLiteContext* context, TfLiteNode* node, TfLiteDivParams* params,
|
||||
const OpData* data, const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2, TfLiteTensor* output) {
|
||||
#define TF_LITE_DIV(type, opname, data_type) \
|
||||
tflite::ArithmeticParams op_params; \
|
||||
data_type output_activation_min, output_activation_max; \
|
||||
CalculateActivationRange(params->activation, &output_activation_min, \
|
||||
&output_activation_max); \
|
||||
SetActivationParams(output_activation_min, output_activation_max, \
|
||||
&op_params); \
|
||||
type::opname(op_params, GetTensorShape(input1), \
|
||||
GetTensorData<data_type>(input1), GetTensorShape(input2), \
|
||||
GetTensorData<data_type>(input2), GetTensorShape(output), \
|
||||
GetTensorData<data_type>(output))
|
||||
if (output->type == kTfLiteInt32) {
|
||||
if (kernel_type == kReference) {
|
||||
if (data->requires_broadcast) {
|
||||
TF_LITE_DIV(reference_ops, BroadcastDivSlow, int32_t);
|
||||
} else {
|
||||
TF_LITE_DIV(reference_ops, Div, int32_t);
|
||||
}
|
||||
} else {
|
||||
if (data->requires_broadcast) {
|
||||
TF_LITE_DIV(optimized_ops, BroadcastDivSlow, int32_t);
|
||||
} else {
|
||||
TF_LITE_DIV(optimized_ops, Div, int32_t);
|
||||
}
|
||||
}
|
||||
} else if (output->type == kTfLiteFloat32) {
|
||||
if (kernel_type == kReference) {
|
||||
if (data->requires_broadcast) {
|
||||
TF_LITE_DIV(reference_ops, BroadcastDivSlow, float);
|
||||
} else {
|
||||
TF_LITE_DIV(reference_ops, Div, float);
|
||||
}
|
||||
} else {
|
||||
if (data->requires_broadcast) {
|
||||
TF_LITE_DIV(optimized_ops, BroadcastDivSlow, float);
|
||||
} else {
|
||||
TF_LITE_DIV(optimized_ops, Div, float);
|
||||
}
|
||||
}
|
||||
}
|
||||
#undef TF_LITE_DIV
|
||||
}
|
||||
|
||||
template <KernelType kernel_type>
|
||||
TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDivParams* params, const OpData* data,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2, TfLiteTensor* output) {
|
||||
if (input1->type == kTfLiteUInt8 && input2->type == kTfLiteUInt8 &&
|
||||
output->type == kTfLiteUInt8) {
|
||||
tflite::ArithmeticParams op_params;
|
||||
SetActivationParams(data->output_activation_min,
|
||||
data->output_activation_max, &op_params);
|
||||
op_params.input1_offset = -input1->params.zero_point;
|
||||
op_params.input2_offset = -input2->params.zero_point;
|
||||
op_params.output_offset = output->params.zero_point;
|
||||
op_params.output_multiplier = data->output_multiplier;
|
||||
op_params.output_shift = data->output_shift;
|
||||
bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
|
||||
GetTensorShape(input1), GetTensorShape(input2), &op_params);
|
||||
#define TF_LITE_DIV(type, opname, dtype) \
|
||||
type::opname(op_params, GetTensorShape(input1), \
|
||||
GetTensorData<dtype>(input1), GetTensorShape(input2), \
|
||||
GetTensorData<dtype>(input2), GetTensorShape(output), \
|
||||
GetTensorData<dtype>(output))
|
||||
if (kernel_type == kReference) {
|
||||
if (need_broadcast) {
|
||||
TF_LITE_DIV(reference_ops, BroadcastDivSlow, uint8_t);
|
||||
} else {
|
||||
TF_LITE_DIV(reference_ops, Div, uint8_t);
|
||||
}
|
||||
} else {
|
||||
if (need_broadcast) {
|
||||
TF_LITE_DIV(optimized_ops, BroadcastDivSlow, uint8_t);
|
||||
} else {
|
||||
TF_LITE_DIV(optimized_ops, Div, uint8_t);
|
||||
}
|
||||
}
|
||||
#undef TF_LITE_DIV
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context, "Unsupported combination of input and output types in Div.");
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
template <KernelType kernel_type>
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data);
|
||||
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input1;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetInputSafe(context, node, kInputTensor1, &input1));
|
||||
const TfLiteTensor* input2;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetInputSafe(context, node, kInputTensor2, &input2));
|
||||
TfLiteTensor* output;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetOutputSafe(context, node, kOutputTensor, &output));
|
||||
|
||||
if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) {
|
||||
EvalDiv<kernel_type>(context, node, params, data, input1, input2, output);
|
||||
} else if (output->type == kTfLiteUInt8) {
|
||||
TF_LITE_ENSURE_OK(
|
||||
context, EvalQuantized<kernel_type>(context, node, params, data, input1,
|
||||
input2, output));
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context,
|
||||
"Div only supports FLOAT32, INT32 and quantized UINT8 now, got %d.",
|
||||
output->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace div
|
||||
|
||||
TfLiteRegistration* Register_DIV_REF() {
|
||||
static TfLiteRegistration r = {div::Init, div::Free, div::Prepare,
|
||||
div::Eval<div::kReference>};
|
||||
return &r;
|
||||
}
|
||||
|
||||
TfLiteRegistration* Register_DIV_GENERIC_OPT() {
|
||||
static TfLiteRegistration r = {div::Init, div::Free, div::Prepare,
|
||||
div::Eval<div::kGenericOptimized>};
|
||||
return &r;
|
||||
}
|
||||
|
||||
TfLiteRegistration* Register_DIV_NEON_OPT() {
|
||||
static TfLiteRegistration r = {div::Init, div::Free, div::Prepare,
|
||||
div::Eval<div::kNeonOptimized>};
|
||||
return &r;
|
||||
}
|
||||
|
||||
TfLiteRegistration* Register_DIV() {
|
||||
#ifdef USE_NEON
|
||||
return Register_DIV_NEON_OPT();
|
||||
#else
|
||||
return Register_DIV_GENERIC_OPT();
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace builtin
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
310
tensorflow/lite/micro/kernels/div_test.cc
Normal file
310
tensorflow/lite/micro/kernels/div_test.cc
Normal file
@ -0,0 +1,310 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include <gmock/gmock.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/kernels/test_util.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
using ::testing::ElementsAreArray;
|
||||
|
||||
class BaseDivOpModel : public SingleOpModel {
|
||||
public:
|
||||
BaseDivOpModel(const TensorData& input1, const TensorData& input2,
|
||||
const TensorData& output,
|
||||
ActivationFunctionType activation_type) {
|
||||
input1_ = AddInput(input1);
|
||||
input2_ = AddInput(input2);
|
||||
output_ = AddOutput(output);
|
||||
SetBuiltinOp(BuiltinOperator_DIV, BuiltinOptions_DivOptions,
|
||||
CreateDivOptions(builder_, activation_type).Union());
|
||||
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
|
||||
}
|
||||
|
||||
int input1() { return input1_; }
|
||||
int input2() { return input2_; }
|
||||
|
||||
protected:
|
||||
int input1_;
|
||||
int input2_;
|
||||
int output_;
|
||||
};
|
||||
|
||||
class FloatDivOpModel : public BaseDivOpModel {
|
||||
public:
|
||||
using BaseDivOpModel::BaseDivOpModel;
|
||||
|
||||
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
|
||||
};
|
||||
|
||||
class IntegerDivOpModel : public BaseDivOpModel {
|
||||
public:
|
||||
using BaseDivOpModel::BaseDivOpModel;
|
||||
|
||||
std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); }
|
||||
};
|
||||
|
||||
class QuantizedDivOpModel : public BaseDivOpModel {
|
||||
public:
|
||||
using BaseDivOpModel::BaseDivOpModel;
|
||||
|
||||
template <typename integer_dtype>
|
||||
std::vector<float> GetDequantizedOutput() {
|
||||
return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_),
|
||||
GetScale(output_), GetZeroPoint(output_));
|
||||
}
|
||||
};
|
||||
|
||||
// For quantized Div, the error shouldn't exceed (2*step + step^2).
|
||||
inline float GetTolerance(int min, int max) {
|
||||
const float kQuantizedStep = (max - min) / 255.0f;
|
||||
const float kQuantizedTolerance =
|
||||
2.0f * kQuantizedStep + kQuantizedStep * kQuantizedStep;
|
||||
return kQuantizedTolerance;
|
||||
}
|
||||
|
||||
TEST(FloatDivOpTest, NoActivation) {
|
||||
FloatDivOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}},
|
||||
{TensorType_FLOAT32, {1, 2, 2, 1}},
|
||||
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
||||
m.PopulateTensor<float>(m.input1(), {-0.2, 0.2, -1.2, 0.8});
|
||||
m.PopulateTensor<float>(m.input2(), {0.5, 0.2, -1.5, 0.5});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(),
|
||||
ElementsAreArray(ArrayFloatNear({-0.4, 1.0, 0.8, 1.6})));
|
||||
}
|
||||
|
||||
TEST(FloatDivOpTest, ActivationRELU_N1_TO_1) {
|
||||
FloatDivOpModel m(
|
||||
{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}},
|
||||
{TensorType_FLOAT32, {}}, ActivationFunctionType_RELU_N1_TO_1);
|
||||
m.PopulateTensor<float>(m.input1(), {-0.2, 0.2, -1.2, 0.8});
|
||||
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, -1.5, 0.5});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(),
|
||||
ElementsAreArray(ArrayFloatNear({-1.0, 1.0, 0.8, 1.0})));
|
||||
}
|
||||
|
||||
TEST(FloatDivOpTest, VariousInputShapes) {
|
||||
std::vector<std::vector<int>> test_shapes = {
|
||||
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
||||
for (int i = 0; i < test_shapes.size(); ++i) {
|
||||
FloatDivOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
||||
{TensorType_FLOAT32, test_shapes[i]},
|
||||
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
||||
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.3, 0.8, 1.1, -2.0});
|
||||
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.6, 0.5, -1.1, -0.1});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(
|
||||
m.GetOutput(),
|
||||
ElementsAreArray(ArrayFloatNear({-20.0, 1.0, 0.5, 1.6, -1.0, 20.0})))
|
||||
<< "With shape number " << i;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(FloatDivOpTest, WithBroadcast) {
|
||||
std::vector<std::vector<int>> test_shapes = {
|
||||
{8}, {2, 4}, {2, 1, 4}, {1, 2, 2, 2}};
|
||||
for (int i = 0; i < test_shapes.size(); ++i) {
|
||||
FloatDivOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
||||
{TensorType_FLOAT32, {}}, // always a scalar
|
||||
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
||||
m.PopulateTensor<float>(m.input1(),
|
||||
{-0.2, 0.2, 0.07, 0.08, 0.11, -0.123, -0.32, 0.54});
|
||||
m.PopulateTensor<float>(m.input2(), {0.1});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(),
|
||||
ElementsAreArray(ArrayFloatNear(
|
||||
{-2.0, 2.0, 0.7, 0.8, 1.1, -1.23, -3.2, 5.4})))
|
||||
<< "With shape number " << i;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(FloatDivOpTest, WithBroadcast5D) {
|
||||
std::vector<std::vector<int>> test_shapes = {{1, 2, 1, 2, 2}};
|
||||
for (int i = 0; i < test_shapes.size(); ++i) {
|
||||
FloatDivOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
||||
{TensorType_FLOAT32, {}}, // always a scalar
|
||||
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
||||
m.PopulateTensor<float>(m.input1(),
|
||||
{-0.2, 0.2, 0.07, 0.08, 0.11, -0.123, -0.32, 0.54});
|
||||
m.PopulateTensor<float>(m.input2(), {0.1});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(),
|
||||
ElementsAreArray(ArrayFloatNear(
|
||||
{-2.0, 2.0, 0.7, 0.8, 1.1, -1.23, -3.2, 5.4})))
|
||||
<< "With shape number " << i;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(IntegerDivOpTest, NoActivation) {
|
||||
IntegerDivOpModel m({TensorType_INT32, {1, 2, 2, 1}},
|
||||
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
|
||||
ActivationFunctionType_NONE);
|
||||
m.PopulateTensor<int32_t>(m.input1(), {-2, 2, -15, 8});
|
||||
m.PopulateTensor<int32_t>(m.input2(), {5, -2, -3, 5});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(), ElementsAreArray({0, -1, 5, 1}));
|
||||
}
|
||||
|
||||
TEST(IntegerDivOpTest, ActivationRELU_N1_TO_1) {
|
||||
IntegerDivOpModel m({TensorType_INT32, {1, 2, 2, 1}},
|
||||
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
|
||||
ActivationFunctionType_RELU_N1_TO_1);
|
||||
m.PopulateTensor<int32_t>(m.input1(), {-2, 2, -12, 8});
|
||||
m.PopulateTensor<int32_t>(m.input2(), {1, 2, -15, 5});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1, 1, 0, 1}));
|
||||
}
|
||||
|
||||
TEST(IntegerDivOpTest, VariousInputShapes) {
|
||||
std::vector<std::vector<int>> test_shapes = {
|
||||
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
||||
for (int i = 0; i < test_shapes.size(); ++i) {
|
||||
IntegerDivOpModel m({TensorType_INT32, test_shapes[i]},
|
||||
{TensorType_INT32, test_shapes[i]},
|
||||
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
|
||||
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 3, 8, 11, -20});
|
||||
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 6, 5, -11, -1});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-20, 1, 0, 1, -1, 20}))
|
||||
<< "With shape number " << i;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(IntegerDivOpTest, WithBroadcast) {
|
||||
std::vector<std::vector<int>> test_shapes = {
|
||||
{8}, {2, 4}, {2, 1, 4}, {1, 4, 1, 2}, {1, 2, 1, 2, 2}};
|
||||
for (int i = 0; i < test_shapes.size(); ++i) {
|
||||
IntegerDivOpModel m({TensorType_INT32, test_shapes[i]},
|
||||
{TensorType_INT32, {}}, // always a scalar
|
||||
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
|
||||
m.PopulateTensor<int32_t>(m.input1(), {-20, 21, 7, 8, 11, -123, -42, -48});
|
||||
m.PopulateTensor<int32_t>(m.input2(), {3});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(),
|
||||
ElementsAreArray({-6, 7, 2, 2, 3, -41, -14, -16}))
|
||||
<< "With shape number " << i;
|
||||
}
|
||||
}
|
||||
|
||||
template <TensorType tensor_type, typename integer_dtype>
|
||||
void QuantizedNoActivation() {
|
||||
const float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
||||
QuantizedDivOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
||||
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
||||
{tensor_type, {}, -1.0, 1.0},
|
||||
ActivationFunctionType_NONE);
|
||||
m.QuantizeAndPopulate<integer_dtype>(m.input1(), {-0.8, -0.2, 0.3, 0.7});
|
||||
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {-0.8, 0.4, 0.8, 1.0});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
|
||||
ElementsAreArray(ArrayFloatNear({1.0, -0.5, 0.375, 0.7},
|
||||
kQuantizedTolerance)));
|
||||
}
|
||||
|
||||
TEST(QuantizedDivOpTest, QuantizedNoActivationUInt8) {
|
||||
QuantizedNoActivation<TensorType_UINT8, uint8_t>();
|
||||
}
|
||||
|
||||
template <TensorType tensor_type, typename integer_dtype>
|
||||
void QuantizedActivationRELU_N1_TO_1() {
|
||||
const float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
||||
const std::vector<std::vector<float>> inputs1 = {{-0.8, 0.2, 0.9, 0.7},
|
||||
{-0.5, 0.2, 0.6, 0.3}};
|
||||
const std::vector<std::vector<float>> inputs2 = {{0.6, 0.4, 0.9, -0.8},
|
||||
{0.6, 0.5, -0.8, 0.5}};
|
||||
const std::vector<std::vector<float>> results = {{-1.0, 0.5, 1.0, -0.875},
|
||||
{-0.833, 0.4, -0.75, 0.6}};
|
||||
for (int i = 0; i < inputs1.size(); ++i) {
|
||||
QuantizedDivOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
||||
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
||||
{tensor_type, {}, -1.0, 1.0},
|
||||
ActivationFunctionType_RELU_N1_TO_1);
|
||||
m.QuantizeAndPopulate<integer_dtype>(m.input1(), inputs1[i]);
|
||||
m.QuantizeAndPopulate<integer_dtype>(m.input2(), inputs2[i]);
|
||||
m.Invoke();
|
||||
EXPECT_THAT(
|
||||
m.GetDequantizedOutput<integer_dtype>(),
|
||||
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
|
||||
<< "With test number " << i;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(QuantizedDivOpTest, QuantizedActivationRELU_N1_TO_1UInt8) {
|
||||
QuantizedActivationRELU_N1_TO_1<TensorType_UINT8, uint8_t>();
|
||||
}
|
||||
|
||||
template <TensorType tensor_type, typename integer_dtype>
|
||||
void QuantizedVariousInputShapes() {
|
||||
const float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
|
||||
const std::vector<std::vector<int>> test_shapes = {
|
||||
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
||||
for (int i = 0; i < test_shapes.size(); ++i) {
|
||||
QuantizedDivOpModel m({tensor_type, test_shapes[i], -3.0, 3.0},
|
||||
{tensor_type, test_shapes[i], -3.0, 3.0},
|
||||
{tensor_type, {}, -3.0, 3.0},
|
||||
ActivationFunctionType_NONE);
|
||||
m.QuantizeAndPopulate<integer_dtype>(m.input1(),
|
||||
{-2.0, 0.2, 1.7, 0.9, 0.4, 2.0});
|
||||
m.QuantizeAndPopulate<integer_dtype>(m.input2(),
|
||||
{1.3, 0.3, 1.1, 0.4, -1.1, 1.9});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(
|
||||
m.GetDequantizedOutput<integer_dtype>(),
|
||||
ElementsAreArray(ArrayFloatNear(
|
||||
{-1.538, 0.667, 1.545, 2.25, -0.364, 1.053}, kQuantizedTolerance)))
|
||||
<< "With shape number " << i;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(QuantizedDivOpTest, QuantizedVariousInputShapesUInt8) {
|
||||
QuantizedVariousInputShapes<TensorType_UINT8, uint8_t>();
|
||||
}
|
||||
|
||||
template <TensorType tensor_type, typename integer_dtype>
|
||||
void QuantizedWithBroadcast() {
|
||||
const float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
|
||||
const std::vector<std::vector<int>> test_shapes = {
|
||||
{8}, {2, 4}, {2, 1, 4}, {1, 4, 1, 2}, {1, 2, 1, 2, 2}};
|
||||
for (int i = 0; i < test_shapes.size(); ++i) {
|
||||
QuantizedDivOpModel m(
|
||||
{tensor_type, test_shapes[i], -3.0, 3.0}, {tensor_type, {}, -3.0, 3.0},
|
||||
{tensor_type, {}, -3.0, 3.0}, ActivationFunctionType_NONE);
|
||||
m.QuantizeAndPopulate<integer_dtype>(
|
||||
m.input1(), {-2.0, 0.2, 0.7, 0.8, -0.5, 1.1, -1.3, 1.2});
|
||||
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {0.7});
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
|
||||
ElementsAreArray(ArrayFloatNear(
|
||||
{-2.857, 0.286, 1.0, 1.143, -0.714, 1.571, -1.857, 1.714},
|
||||
kQuantizedTolerance)))
|
||||
<< "With shape number " << i;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(QuantizedDivOpTest, QuantizedWithBroadcastUInt8) {
|
||||
QuantizedWithBroadcast<TensorType_UINT8, uint8_t>();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace tflite
|
Loading…
x
Reference in New Issue
Block a user